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ABSTRACT  

Two-chemistry polymer systems are attractive platforms for a wide range of optical and mechanical applications due to 
the orthogonal chemistries of the initial thermoset matrix and the subsequent photo-initiated polymerization. This 
scheme allows the mechanical and optical properties of the materials to be individually addressed. However, the 
mechanical properties of both the initial matrix and the photopolymer system affect the performance of these materials in 
many applications from holography to optically-actuated folding. We present a mechanical model along with 
experimental demonstrations of a two-chemistry holographic photopolymer system. A three-dimensional finite element 
model is used to simulate the mechanical and chemical responses in time. The model uses standard material 
measurements to predict both large-scale deformation and more localized stress and strain. To demonstrate the 
magnitude of mechanical stresses possible in these materials, we show bending of thin strips with UV light activation 
using an optical absorber to create an intensity gradient in depth. The resulting non-uniform polymerization causes 
shrinkage and bending toward the light followed by swelling and bending away from the light caused by monomer 
diffusion. In addition to this large-scale bending, we demonstrate that the model can be used to qualitatively predict 
surface deformations that can be used for surface relief optical elements. The mechanical model enables understanding 
of shrinkage and swelling properties of a material system that affect the performance of that system over a wide range of 
illumination conditions. 
Keywords: photopolymer, mechanical model, origami, surface relief gratings, holography 
 

1. INTRODUCTION  
High quality holograms, desirable for high diffraction efficiency holographic optical elements [1,2], require not only 
high refractive index changes, but also control over the shrinkage and mechanical stability of the materials during 
recording. In many two-chemistry polymer systems used for holography, there is an initial thermoset matrix that sets the 
mechanical properties of the material. Then, a smaller percentage of the mixture is devoted to a high index of refraction 
molecule that is photo-initiated. Upon localized light initiation and subsequent polymerization, an area of low monomer 
concentration is created where the light illuminates the sample. This concentration gradient causes diffusion of the 
mobile monomer species into the bright areas. Diffusion of monomer in holographic materials can cause significant 
mechanical stresses, especially as concentration of high index species increases to obtain large refractive index change.  
 
While bulk shrinkage in holographic photopolymers has been studied extensively [3,4,5], local mechanical stresses have 
received less attention. These mechanical stresses that occur through the diffusion of monomer can cause non-uniformity 
in holograms, decreasing peak diffraction efficiency and affecting the angular Bragg selectivity, as well as stress 
birefringence, surface relief elements in unconstrained films, and even large scale bending in some circumstances. We 
investigate a model material with large mechanical stress to demonstrate a mechanical model of the material that can be 
applied to other two-chemistry photopolymers, different geometries and optical patterning systems. Understanding the 
large scale mechanical deformations can help develop an intuition for the stresses happening on smaller scales.  

To demonstrate the magnitude of the mechanical stress, we demonstrate bending of thin strips in this two-chemistry 
photopolymer system with ultraviolet (UV) light activation. An optical absorber is added to create an intensity profile 
that decreases in depth. The UV light initiates photopolymerization in the bright areas, causing an initial shrinkage and 
bending of the film toward the light. The monomer concentration gradient results in diffusion of monomer from the dark 
areas to the bright areas, causing swelling. The swelling results in bending of the film away from the light. We achieve 
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bending of 120 μm thick films, with radii of curvature as small as 1 mm in less than 2 hours with a single optical 
exposure and no post processing.   

In addition to this large-scale bending, we demonstrate that the model can be used to qualitatively predict surface 
deformations that have been observed to become a significant issue in open or unconstrained film processing, especially 
at large spatial frequencies [6,7,8]. We create surface relief gratings using a mask illumination and show how the surface 
height scales with pitch spacing of the grating. Understanding the formation of these gratings will not only help prevent 
unwanted surface features in volume holograms, but also improve design of surface optical elements. This will allow for 
better design of materials and optical exposures to control the final optical and mechanical properties of devices such as 
holographic optical elements.  

2. MATERIAL CHARACTERIZATION 
2.1 Materials fabrication 

The “liquid” components of the photopolymer gel commonly include a photoinitiator and monomer encapsulated within 
a solid, crosslinked polymer network via an orthogonal polymerization reaction. Light exposure initiates polymerization, 
locally consuming the monomer and creating immobile polymer chains. Subsequent diffusion causes the monomer 
concentration to re-equilibrate, after which a final uniform light exposure polymerizes the remaining monomer and 
renders the material optically inert.  The resulting material has higher concentration of photopolymer and lower 
concentration of cross-linked network in regions of optical exposure, leading to refractive index approximately equal to 
the volume fraction weighted average of the refractive indices of the two components.  
 
The crosslinked matrix of the two-component photopolymer system consists of a stoichiometric ratio of polyisocyanate 
(Desmodur N3900, Covestro AG) and polyol (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone, 
Sigma Aldrich) that forms a flexible polyurethane. The photoreactive component contains of a 1:10 molar ratio of 
photoinitiator TPO (2, 4, 6-Trimethylbenzoyl-diphenyl-phosphineoxide, Sigma Aldrich) and commercially purchased 
trimethylolpropane ethoxylate triacrylate (TMPTA, Sigma Aldrich), a trifunctional acrylate. Samples were made with 20 
wt% of this writing monomer. The matrix and photoreactive components were mixed together in their liquid form at 
60°C, degassed, and then cast between two 1 mm glass microscope slides. Sample thicknesses were set using polyester 
spacers ranging between 100 to 500 μm. Matrix polymerization occurred via the isocyanate reaction overnight in an 
oven at 60°C. Additionally, samples used for bending experiments contained 0.5 wt% of a ultraviolet optical absorber 
(Tinuvin 328, Ciba Specialty Chemicals) to provide a gradient in light intensity through the thickness of the sample. 
 

2.2 Materials measurements 

A number of materials parameters are used to inform the mechanical model and move toward a quantitative picture of 
the stress and strain in the material. Information on the modulus of the material before and after cure, the volume 
changes from swelling in monomer, the diffusion and polymerization times, and shrinkage all affect how the material 
with bend and deform under optical illumination.  

Compressive strain tests were performed on a mechanical test system (MTS Systems Corporation) between two parallel 
plates using 250 N and 1000 N load cells to determine the polymer compressive modulus. The compressive modulus was 
taken to be the slope of the polymer stress-strain curve at 15% strain. Tests were performed on three sets of samples: 
polyurethane matrix only, polyurethane matrix with 20 wt% writing monomer before light illumination and polyurethane 
matrix with 20 wt% monomer after full optical cure. The initial modulus for just the urethane matrix with no writing 
monomer was found to be 3 MPa. When the matrix is set up with 20 wt% monomer mixed into the solution, the 
compressive modulus decreases by a factor of 2 to 1.5 MPa. After fully curing the writing monomer with a 365 nm light 
source, this modulus increases significantly to 20 MPa, likely due to the additional highly crosslinked network formed 
by the tri-functional acrylate writing system.  

The volume change in the urethane matrix caused by in-diffusion of additional acrylate monomer is another factor 
affecting the strain of the samples under light illumination. Samples of matrix with no writing monomer were formed 
into ~ 280 μm thick, 2.5 mm x 13 mm thin strips. The weight and spatial dimensions of the strips were measured, and 
then the samples were immersed in the liquid TMPTA monomer for varying amounts of time. The samples were then 
removed, allowed to equilibrate and re-measured. The results of the swelling are shown in Figure 1. 
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where ܿ௠ is the concentration of the fluid-like monomer, ܿ௠෦  is the concentration of the polymerized solid-like monomer 
network, ܿ௠෦଴ is the maximum concentration of solid monomers corresponding to complete polymerization and ݇௠ is the 
polymerization rate constant which is a function of the light intensity ܫ and spatial location ࢞. The value of ݇௠ is 
obtained from experimental measurements by fitting the solution of the above equation to observed measurements as 
shown in Figure 4. 

 
Figure 4. Plot of monomer conversion ratio with exposure time from experiments and fit with the solution 
corresponding to ݇௠ = 2.59	/݉݅݊ for light intensity 5 mW/cm2. 

In addition to the above equations governing the mass transport of fluid constituents and rate of formation of solid 
constituents, a continuity constraint is imposed such that  ଵ௃ + ߶௠ + ߶௠෪ = 1       (5) 
where ܬ is the ratio of the current volume of the mixture (including swelling and mechanical deformations) to the dry 
volume of the matrix, and ߶௠෪  is the volume fraction of the solid-like polymerized monomer. Thus, the overall 
distribution of mass of different components of the system is obtained by solving the above equations. It is to be noted 
that the mass distribution is governed by the competition between the polymerization rate and the diffusivity of the 
monomers.  
 
3.2 Mechanical behavior 

The mechanical or elastic properties of polymers are typically described using hyper-elastic models also called rubber 
elasticity. The base polymer matrix and newly formed polymerized monomer form interpenetrating networks. For both 
solid polymer networks, the Arruda-Boyce [16] model is used as the constitutive model for which the stress-strain 
relationship is given by  ࣌ = ૚݌− + ∑ଵൣܥ2 ଵ௜ିଵହ௜ୀଵܫ௜ିଵߚ௜ߙ݅ ൧(2ࣕ + ૚)     (6) 
where ࣌ is the stress tensor, ݌ is the hydrostatic pressure due to incompressibility, ࣕ = ૚/૛(்ࡲࡲ − ૚) is the nonlinear 
strain given in terms of the deformation gradient ࡲ = ૚ + ߲࢛/߲࢞ for the macroscopic solid displacement field ࢛(࢞, ଵܫ ,(ݐ =  ௜ can be found in other referencesߙ are the material parameters. The values of ߚ ଵ andܥ is an invariant, and (்ࡲࡲ)ݎݐ
[17]. The parameter ߚ is dimensionless and is interpreted as the limiting network stretch.  ܥଵ has the dimensions of stress 
and is typically written in terms of the cross-link density of the polymer as ܥଵ =  ௫ is the number of molesߩ ௫ܴܶ, whereߩ
of cross-links per unit volume of the solute. We adopt this description for the base polymer matrix and the value of ܥଵ 
and ߚ were obtained from experimental uniaxial compression tests as shown in Figure 5. 
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Figure 13. Surface profiles for three different pitch surface relief gratings written with identical writing intensities and times. 
The bright areas have a higher surface profile due to swelling of monomer into the polymerized regions. As the pitch 
increases, the surface height also increases.  

This level of surface feature on an open film used for holography would diffract a significant amount of light away from 
the desired Bragg angle. We predict this linear trend of surface height with grating pitch will continue down to 
holographic pitches, on the order of 1 μm, where we would expect surface profiles on the order of 50 nm. The diffraction 
efficiency of such a surface profile is given by, η, of the qth order of a thin sinusoidal grating [18],  ߟ = ௤ଶܬ ቀ௠ଶቁ ,      (7) 
where Jq is a Bessel function of the first kind, order q, and m is the peak-to-peak excursion of the phase delay, in this 
case,  ݉ = ߨ2 (௡ିଵ)௛ఒ  ,     (8) 
where n is the index of refraction of the polymer, h is the peak-to-valley height of the surface profile, and λ is the 
wavelength of the read light. For a surface profile of h = 50 nm, n = 1.5, and λ = 633 nm, this gives a first order 
diffraction efficiency η = 0.38%. Because the diffraction efficiencies add in field,  ߟ = ൫ඥߟ௛௢௟௢௚௥௔௠ + ඥߟ௦௨௥௙௔௖௘൯ଶ = ௛௢௟௢௚௥௔௠ߟ + ௦௨௥௙௔௖௘ߟ ± 2ඥߟ௛௢௟௢௚௥௔௠ඥߟ௦௨௥௙௔௖௘  .   (9) 
For a ηsurface = 0.38%, and a ηhologram = 100%, this can result in a change in measured diffraction efficiency of 12%. Open 
or unconstrained films must therefore be carefully characterized and monitored to understand the effect of the surface 
relief gratings on the hologram performance for larger pitches.  
 
On the other hand, when designing surface relief elements in these diffusive photopolymers, the dependence of the 
surface height on the feature size will have a significant effect on the processing. Smaller features will require larger 
exposure doses to result in equal surface heights as the larger features. Designing around this effect is essential to 
obtaining the desired surface features.  
 

6. CONCLUSIONS 
We have demonstrated an initial mechanical model for predicting the behavior of two-chemistry photopolymers used for 
holographic applications. We use standard chemical and mechanical materials measurements to calibrate the model. We 
demonstrate large scale bending of films in thin films. We also investigate the effect of grating pitch on the height of 
surface relief grating, with experimental results that agree with the linear trend predicted by the mechanical model. The 
experimental data demonstrates the magnitude of mechanical stresses that can be created in this model material and we 
demonstrate the large effect these small surface deformations can have on volume hologram performance. Further study 
of these mechanical deformations is essential for designing materials and optical exposures for manufacturing uniform, 
high diffraction efficiency holographic optical elements, and surface relief optical elements.  
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