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A B S T R A C T

Accurate fitting of measured current-voltage [I V( )] data is crucial to the correct analysis and understanding of
metal-insulator–metal (MIM) diodes, especially for optical rectennas. With the commonly used polynomial fit-
ting of the I V( ) data, the order of the fit can drastically affect the diode performance metrics such as resistance,
responsivity, and asymmetry. Additionally, the resulting fitting coefficients provide no useful parameters. An
exponential-based equation can fit the I V( ) data well, can avoid artifacts from the choice of order of the
polynomial, and allows for the accurate calculation of diode performance metrics directly from the fitting
coefficients. Connecting the performance metrics to fitting coefficients shows a correspondence between zero-
bias responsivity and asymmetry at any given voltage.

1. Introduction

High-speed nonlinear diodes, such as metal-insulator–metal (MIM)
diodes, have been increasingly investigated for use in rectennas for
optical detection and energy harvesting [1–7]. Optical rectennas are
antenna-coupled diode rectifiers that absorb high-frequency electro-
magnetic radiation and convert it to a DC signal. Measuring the DC
I V( ) characteristic of fabricated MIM diodes is the first step in ex-
perimentally analyzing and testing an optical rectenna. From the DC
I V( ) characteristics, certain performance metrics, such as differential
resistance, responsivity, and asymmetry, given in (1)–(3) respectively,
can be extracted. These metrics describe properties that are central in
assessing a diode’s suitability for use in an optical rectenna.
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For an efficient rectenna, a high coupling efficiency between the
MIM diode and the antenna is required. The antenna impedance is ty-
pically on the order of 100 ohms, and for efficient power transfer the
diode resistance should match it [8,9]. For this reason, only diodes that
have a relatively low resistance are of interest, despite the higher
asymmetry and nonlinearity seen in some high-resistance diodes

[10–13]. A high diode responsivity, which is a measure of rectified DC
voltage or current as a function of input power, and a large asymmetry,
which is the ratio of forward to reverse current, are required for effi-
cient rectification [9]. Since optical rectennas usually operate at vol-
tages close to zero [14], we use the zero-bias resistance, =R R (0)d0 , and
the zero-bias responsivity, =β β (0)0 , when analyzing our diodes. Using
zero-bias values simplifies the differential resistance and responsivity
curves into single quantitative metrics.

While R V( )d and β V( ) can be calculated directly from I V( ) data
using central difference approximation derivatives, a problem often
arises when noise in the experimental data gets amplified by the deri-
vatives. To overcome this noise amplification, it is necessary to use
some sort of fitting or smoothing. A polynomial fit using least square
regression is an attractive option because it is easy to differentiate and
integrate, and a polynomial of high enough order can fit any curve to an
arbitrarily high degree of accuracy. This arbitrarily high degree of fit
accuracy, however, can give misleading results. Runge’s function is one
well-established example [15,16]. Despite the known problems with
polynomial fitting, it has become common practice to fit MIM I V( ) data
with a polynomial when analyzing MIM diodes [17–26]. In this paper
we expose the shortcomings of the polynomial fit for MIM diodes
through the analysis of a double insulator MIM diodes. We demonstrate
that an alternative fitting procedure can overcome these shortcomings.

The first diode we examine, MIM-1 ( ≅R (0)d 16 kΩ), is a Co-CoOx-
TiO2-Ti double insulator MIM diode fabricated as described in Herner
[26]. While we focus on double insulator MIM diodes, the concepts
discussed are appropriate for single insulator MIM diodes as well. We fit
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the measured I V( ) data for MIM-1 with 5 ,7th th, and 9th order poly-
nomials. These fits generate smooth responsivity curves shown in
Fig. 1(a). However, these responsivity curves vary greatly between the
different fit orders, which is evidence that these results are misleading.
The asymmetry curves in Fig. 1(b) also show substantial variation, not
only from each other, but from the data. Unlike R V( )d or β V( ), the
asymmetry does not rely on I V( ) derivatives, and so it can be calculated
directly from the interpolated I V( ) data. The interpolation is necessary
to ensure that the currents at both the positive and negative voltage are
taken at a uniform voltage distance from =V 0. Even though the
asymmetry can be calculated from the data directly, the noise of the
measurement is still clearly evident, which again demonstrates the need
for quality fitting. These curves show that the polynomial fits do a
particularly poor job of estimating the asymmetry at low voltages due
to the polynomials ability to not pass through the origin. Because of
these erroneous results, we developed an alternative, more robust fit-
ting model.

2. Calculating performance metrics from the exponential model

The electron tunneling responsible for the rectification in MIM
diodes is fundamentally an exponential process [27]. To overcome
limitations of the polynomial fit, we propose an alternative approach
using least square regression to fit an equation based on exponentials.
This fit facilitates an understanding of how well the diode will operate
in a circuit (e.g., in a rectenna,) and provides a useful basis for diode
improvement. The proposed exponential-based fit is:

= + = − −I V ae ce I e e( ) ( )bV dV bV dV
0 (4)

In practice, we use the first version of the equation to perform the fit
as it is a convenient MATLAB built-in fitting function, ‘exp2’. After the
fit is complete, we check that the variation between a and c is less than
1% and set I0 to the average of a and c and force the sign conventions in
the second version of the equation. In this equation, parameter b
strongly influences the I V( ) at positive voltages while parameter d af-
fects the curve at negative voltages. The parameter I0 scales the curve,
thus modifying the diode resistance. The first indication that (4) is an
appropriate form for a diode fit is that when =d 0 and =b nv

1
t
, where n

is an ideality factor and vt is the thermal voltage, the equation simplifies
to the Shockley diode equation, which describes an ideal semiconductor
diode [28]. Simmons proposed a similar exponential form for a trape-
zoidal high-barrier diode [27]. We note that Simmon’s equation does
not describe our MIM diodes accurately because for low-barrier height
MIM diodes at intermediate voltages (100mV ⩽ ⩽V 300mV), the equa-
tion simplifies to a symmetric I V( ) formula and overestimates the
tunnel current [29]. In contrast to the polynomial fits, when the ex-
ponential fit is used the resistance, responsivity, and asymmetry are
directly determined by the fitting coefficients in a physically mean-
ingful way. In this paper, we calculate resistance, responsivity and

asymmetry for two MIM diodes of different material sets that were
fabricated by different techniques. These different diodes show slightly
different I V( ) curvature and fitting techniques. We demonstrate that
the exponential fitting is a superior alternative to the polynomial fit.

2.1. Resistance

To effectively match the diode resistance, Rd, to the antenna, it is
necessary to understand the relationship between the diode I V( ) and
R V( )d . Substituting the exponential equation for the diode I V( ), (4),
into the diode differential resistance equation, (1), results in:
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From (5), we can calculate the zero-bias differential resistance R0.
At V = 0, the exponential terms vanish and R0 can be expressed simply
as:
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2.2. Responsivity

Since responsivity provides the connection between optical input
power and DC output, it is useful to understand the relationship be-
tween the I V( ) and β V( ). Substituting the exponential I V( ) equation,
(4), into (2), we obtain the voltage-dependent responsivity:
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Just as with resistance, the first parameter of interest is the zero-bias
responsivity, since we are often interested in rectenna operation at or
near zero bias. The responsivity at zero bias is:

= −β b d1
2

( )0 (8)

Zero-bias responsivity is dependent only on the two coefficients in
the arguments of the exponentials in (4). From (4) we can see that at
large voltage magnitudes, one exponential dominates the I V( ) equa-
tion. Similarly, from (7), we see that at large positive voltages β V( )
asymptotically approaches b1

2 and at large negative voltages β V( ) ap-

proaches − d1
2 .

2.3. Asymmetry

The asymmetry gives insight into a diode’s ability to efficiently
rectify. Again, substituting (4) into (3) and simplifying gives the voltage
dependent asymmetry:

(a) (b)

Fig. 1. Effects of polynomial fitting order on a moderate-resistance diode (MIM-1) (a) responsivity as a function of voltage, (b) asymmetry as a function of voltage.
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= =−A V e e( ) b d V β V( ) 2 0 (9)

This asymmetry equation is rewritten in terms of β0 using (8), thus
showing a direct correspondence between the diode asymmetry and
zero-bias responsivity.

3. Exponential fit of I V( ) data

Our interest in relatively low resistance diodes [29] dictates that the
MIM insulators be thin (<5 nm). Thus, the maximum measured voltage
range for our diodes, to avoid dielectric breakdown, is the on the order
of several hundred millivolts. For MIM-1, the exponential fit coeffi-
cients are as follows: I0 = 3.3 × −10 6 A, b = 10.0 −V 1 and d = 8.9 −V 1.
Using (6) and (8), these coefficient values correspond to a β0 = 0.55 A/
W and a R0 = 16 kΩ. The quality of the fit is assessed in two ways: First,
the fit residue, which is calculated from the I V( ) data minus the I V( )
fit, indicates how well the model fits the data. Second, comparing the fit
asymmetry to the interpolated data asymmetry shows how closely the
model estimates performance metrics.

For MIM-1, the exponential fit is of similar quality to the polynomial
fit. In Fig. 2(a), the three polynomials (5 ,7th th, and 9th order fits) and
exponential I V( ) curves are all nearly indistinguishable from the data
and each other. A closer look at the fit quality in Fig. 2(b) reveals that
all fits have comparably low residues. However, as shown earlier,
changing the order of the polynomial fit results in a wide range of re-
sponsivity curves. Fig. 2(c) shows the exponential fit responsivity curve
overlaid on Fig. 1(a), the polynomial fits responsivity curves. Fig. 2(d)
shows the exponential fit asymmetry overlaid on the polynomial and
interpolated data asymmetry from Fig. 1(b). Clearly, the exponential fit
does a superior job of representing the diode asymmetry.

The second diode examined is a Ni-NiO-TiO2-Cr double insulator
diode, MIM-2. MIM-2 ( ≅R (0)d 4 kΩ) has a lower resistance than MIM-1
and was fabricated with a shadow-mask technique [30]. Diodes with

lower resistances often suffer less variation between different poly-
nomial fit orders, but even when the polynomial fits are well behaved,
the resulting polynomial equation fails to provide the same connection
among diode properties that the exponential fit provides.

We now repeat the fitting procedure for MIM-2, comparing the
exponential model to the 7th order polynomial fit. Just as with MIM-1,
both the 7th order polynomial and exponential fits are nearly indis-
tinguishable from the raw I V( ) data, and therefore are not shown.
Unlike MIM-1, however, once we examine the residue plot, Fig. 3(a),
we can see that the exponential fit is substantially less accurate than the
polynomial, especially at higher voltage magnitudes. The exponential
fit tends to overstate the magnitude of the current at higher voltages.
This systematic error corresponds to a curvature of the I V( ) data that
does not increase with voltage as quickly as the fit does. The funda-
mental nature of the exponential model does not allow for this reduc-
tion in curvature because away from =V 0, only one of the exponential
terms in (4) dominates. One physical explanation of this reduced cur-
vature of the I V( ) is an unaccounted for series resistance. This series
resistance also accounts for the flattening of the asymmetry curve in
Fig. 1(b), rather than the unbounded exponential growth predicted by
(9).

A small portion of the resistance is due to the inability, in practice,
to remove 100% of the parasitic lead resistance even with 4-point probe
measurements, while the remainder is associated with the MIM diode
junction itself. In Fowler-Nordhiem tunneling, electrons are transported
through the dielectric barrier partially by tunneling, and partially by
conduction in the conduction band of the insulator [31]. This transport
through the conduction band adds to the series resistance. The distance
an electron travels in the conduction band depends on the insulator
thickness and the energy band structure, which changes for different
voltages. Therefore, the series resistance depends on the voltage, V. To
fit this adequately while avoiding unnecessary complexity, we choose
the simplest form that meets the physical requirements for this voltage-

(a) (c) 

(b) (d) 

Fig. 2. Comparison of 5 ,7th th, and 9th order polynomial fits (dashed grey, labeled in Fig. 1) and exponential fit (solid orange, I0 = 3.3 × −10 6 A, b = 10.0 −V 1 and d = 8.9 −V 1) for MIM-1
( ≅R (0)d 16 kΩ). (a) Measured diode DC I V( ) characteristics (green circles) and I V( ) fits versus voltage, V. (b) Calculated fit residue. (c) Calculated fit responsivity. (d) Calculated fit
asymmetry and interpolated data asymmetry (green circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dependent series resistance: (1) resistance is always positive, and (2) it
has a continuous first derivative. Thus, the voltage-dependent series
resistance, Rv, is approximated as follows:

= +R V R αV( )v s
2 (10)

where Rs is the constant portion of the series resistance, and α is the
coefficient for the voltage-dependent portion. The relatively low zero-
bias resistance of MIM-2 makes the inclusion of this additional voltage-
dependent series resistance necessary for an accurate fit, unlike for
MIM-1 where the diode resistance was large enough that the series
resistance was negligible.

4. Modified exponential fit

Previously, when (4) described the diode I V( ), it was unnecessary
to distinguish between the voltage on the diode, VD and the measured
voltage, V, as =V VD . With the addition of a series resistance, Rv, there
is a third voltage to consider, the resistor voltage, VR. The voltage,
which is measured over the diode and resistor series combination, can
be separated into two components:

= +V V VD R (11)

The diode voltage, VD, from (11) can be expressed in another form:

= −V V R V I( )D v (12)

where VD is the diode voltage, and R V I( )v gives the voltage across the
voltage-dependent series resistor. Even though we are now including a
series resistance in our analysis, the diode I V( ) data is still represented
by (4), which can be rewritten to clarify which voltage the I V( ) re-
lationship applies to:

= − −I V I e e( ) ( )D
bV dV

0 D D (13)

The relationship between the measured current, I V( ) and the
measured voltage, V, can be found by substituting (12) into (13) for VD

and is described by:

= −− − −I V I e e( ) ( )b V I V R V d V I V R V
0

( ( ) ( )) ( ( ) ( ))v v (14)

Since the current in (14) is recursive, the fit coefficients cannot be
obtained through least squares regression as done for (4) in Section 3.
However, with the addition of a few preliminary data manipulation
steps, and a comparison of a series of least squares regression fits, we
can solve for the five coefficients (R α b d, , ,s , and I0). Appendix A explains
this procedure in detail.

To compare the results of the modified exponential fit with the
unmodified version, we plot I V( )’s, residues, responsivities and asym-
metries. Fig. 4(a) shows that for the data, the unmodified exponential
fit, and the series resistance exponential fit are all indistinguishable in
the I V( ) plot. Fig. 4(b) present the fit residue for the exponential and

the modified exponential fits. This shows that the addition of the series
resistance improves the fit, compared to a simple exponential without
an additional resistance. Fig. 4(c) shows the responsivity of both ex-
ponential fits, and that, as expected, the addition of the series resistance
reduces the curvature of the I V( ) at higher voltages. Finally, Fig. 4(d)
shows the asymmetry for both exponentials with the interpolated
asymmetry data. Clearly, the exponential with the series resistance does
a much more accurate job of representing the asymmetry than the
unmodified exponential.

Just as we did for the fit without the series resistance, we want to
determine the relationship between our model and the diode perfor-
mance metrics. Because of the complex relationship between I and V in
(14), there are not useful analytic expressions for voltage-dependent
diode resistance, responsivity or asymmetry. However, we can find
expressions for zero-bias resistance and responsivity, because those
complex voltage dependent expressions simplify at =V 0 V.

4.1. Zero-bias resistance

The diode resistance is simply the series combination of a resistor
and the exponential resistance in (5). At =V 0, the voltage-dependent
resistance part of Rv vanishes and leaves only Rs. Thus the zero-bias
resistance can be expressed as follows:

=
+

+ = +R
I b d

R R R1
( ) s

exp
s0

0
0 (15)

If we refer to the resistance in (6) as R exp
0 , we get the second form,

where we see the zero-bias resistance is the sum of the constant portion
of the series resistance and the zero-bias resistance from the unmodified
exponential. Using (15) for MIM-2 fitting results gives R0 = 4.1 kΩ.

4.2. Zero-bias responsivity

While the complexity of (14) leads to a voltage-dependent re-
sponsivity that provides little insight into the diode characteristics, the
responsivity at zero-bias can be calculated as:

⎜ ⎟= − ⎛
⎝ + +

⎞
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R I b d

1
2
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1 ( )s

0
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Using (16) for MIM-2, we find β0 = 0.65 A/W. If we refer to the
responsivity in (8) as β exp

0 , (16) simplifies to the following:

⎜ ⎟= ⎛
⎝ +

⎞
⎠

β β
R R
1

1 /
exp

s
exp0 0
0

2

(17)

As Rs gets large relative to R exp
0 , the zero-bias responsivity is reduced

relative to β exp
0 . Of course, if =Rs 0 Ω, then =β β exp

0 0 .

Fig. 3. Comparison of 7th order polynomial fit (dashed blue) and exponential fit (solid orange, I0 = 2.65 × −10 5 A, b = 5.53 −V 1 and d = 4.82 −V 1) for MIM-2. (a) Calculated fit residue.
(b) Calculated fit asymmetry and interpolated data asymmetry (green circles) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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5. Conclusion

Inaccurate fitting of fabricated MIM didoes can lead to erroneous
analyses of a diode’s I V( ) characteristics and its performance metrics.
We found that polynomial fitting can misstate responsivity and asym-
metry values, two of the main metrics used to assess the performance of
diodes in optical rectennas. Using the wrong order polynomial fit for a
high resistance diode can drastically affect the resulting responsivity
curve. Different order polynomial fits can even imply different diode
polarity. Here, we have presented an exponential fitting method as an
alternative to the commonly used polynomial fitting procedure. The
exponential fit provides several advantages in analyzing MIM diodes
such as fewer fitting parameters and a simple relationship between the
fitting parameters and the diode performance metrics. One example of
the relationships provided is that the diode asymmetry is directly linked
to the zero-bias responsivity. Another is a simple function relationship
showing how series resistance degrades responsivity. This exponential
model can be used to develop a broader understanding of MIM diode
I V( ) characteristics, and the connections between performance metrics.

We have analyzed the exponential fit for two diodes, one with high

resistance and one with low resistance. For the low resistance diode, an
additional voltage-dependent series resistance was necessary to get an
accurate fit. The high resistance diode can be fit by either the modified
or unmodified exponential fit and achieve the same results. The addi-
tion of these exponential fitting procedures to existing analysis tech-
niques will help avoid potentially misleading results, and give added
confidence to derived performance metrics.
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Appendix A. Modified exponential fitting procedure

To fit the data to (14), we find the pair of Rs and α values that allow the best fit for (13) to the modified I V( ) data. Given a pair of Rs and α values,
the V in the V I( , ) data set can be converted to VD using (12). When the data is converted to V I( , )D ordered pairs, (13) is now an appropriate model to
fit the data. Coefficients I b,0 , and d can be determined using least squares regression, as done in Section 3.

To determine the optimum Rs and α, we pick the pair of Rs and α values that give the highest coefficient of determination, R2, for the fit of (13) to
modified V I( , )D data sets. To make this comparison of different values for Rs and α, we first establish a range of interest. The additional series
resistance must be smaller than the smallest measured absolute diode resistance, which can be approximated as V I V/ ( )max max , where Vmax is the
maximum measured voltage. Thus for Rs, we are interested in the following range:

⩽ ⩽R V I V0 / ( )s max max (A.1)

For α, we examine this range:

Fig. 4. Comparison of exponential (orange dots, with Eq. (4) parameters I0 = 2.65 × −10 5 A, b= 5.53 −V 1 and d= 4.82 −V 1) and modified exponential (solid purple, I0 = 1.83 × −10 5 A, b
= 8.64 −V 1, d = 7.07 − RV , s1 = 334 Ω and α = 1125 VΩ/ 2) fits for MIM-2 ( ≅R (0)d 4 kΩ). (a) Measured diode DC I V( ) characteristics (green circles) and I V( ) fits versus voltage, V. (b)
Calculated fit residue. (c) Calculated fit responsivity. (d) Calculated fit asymmetry and interpolated data asymmetry (green circles). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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⩽ ⩽α V I V0 1/ ( )max max (A.2)

A new (V I, )D pair is generated for every α and Rs combination. The exponential model in (13) is used to fit the resulting VD vs I. The combination
of Rs and α values that have the highest coefficient of determination, R2, for the fit to (13) is chosen for the final model. For MIM-2, we have a
maximum R2 when Rs = 334 Ω and α = 1125 VΩ/ 2. These Rs and α values lead to b = 8.64 − dV ,1 = 7.07 −V 1, and I0 = 1.83 × −10 5 A. This fit
procedure is also suitable for MIM-1, and shows that the series resistance is, in fact, negligible in that case. The highest R2 is found when both Rs = 0
Ω and α = 0 VΩ/ 2, resulting in identical b d, , and I0 values established in Section 3.

Now that we have the fit coefficients for MIM-2, we can generate the fit I(V) needed to plot the responsivity, resistance and residue. Because the
current in (14) is recursive, several steps are required to plot the resulting fit. First, we plug (13) in for the current in (12) to get an equation that
relates V and VD. Since this results in a transcendental equation, we must numerically solve for VD values for a set of voltages, V, over any range of
interest, generally (±400mV). Once we have VD, we can calculate I using (13). Now that we have V and I we can easily plot I V( ), the residue, the
asymmetry, or generate resistance and responsivity curves using central difference approximation derivatives.
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