
Chapter 2

Optical Frequency Rectification

Sachit Grover and Garret Moddel

Abstract Submicron antenna-coupled diodes, called optical rectennas, can

directly rectify solar and thermal electromagnetic radiation, and function as

detectors and power harvesting devices. The physics of a diode interacting with

electromagnetic radiation at optical frequencies is not fully captured in its DC

characteristics. We describe the operating principle of rectenna solar cells using a

quantum approach and analyze the requirements for efficient rectification.

In prior work classical concepts from microwave rectenna theory have been

applied to the analysis of photovoltaic power generation using these

ultra-high-frequency rectifiers. Because of their high photon energy the

interaction of petahertz-frequency waves with fast-responding diodes requires a

semiclassical analysis. We use the theory of photon-assisted transport to derive the

current–voltage [I(V)] characteristics of metal/insulator/metal (MIM) tunnel diodes

under illumination. We show how power is generated in the second quadrant of the

I(V ) characteristic, derive solar cell parameters, and analyze the key variables that

influence the performance under monochromatic radiation and to a first-order

approximation.

The photon-assisted transport theory leads to several conclusions regarding

the high-frequency characteristics of diodes. The semiclassical diode resistance and

responsivity differ from their classical values. At optical frequencies, a diode even with

a moderate forward-to-reverse current asymmetry exhibits high quantum efficiency.

An analysis is carried out to determine the requirements imposed by the

operating frequency on the circuit parameters of rectennas. Diodes with low

resistance and capacitance are required for the RC time constant of the rectenna
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to be smaller than the reciprocal of the operating frequency and to couple energy

efficiently from the antenna.

Finally, we carry out a derivation that extends the semiclassical theory to the

domain of non-tunneling based diodes, showing that the presented analysis is

general and not restricted to the MIM diode.

2.1 Introduction

At low frequencies, rectification is generally associated with AC voltage excitation

across a nonlinear element (diode) that leads to generation of a net DC current

due to the asymmetry in the diode characteristics. When considering lightwaves,

rectification connotes excitation of electron–hole pairs across the bandgap of a

semiconductor and their separation leading to generation of a DC current. Optical

rectennas are high-frequency elements that extend the concept of rectification of an

AC excitation from low frequencies to light waves. The high-frequency operation

poses severe requirements on the antenna and diode elements. It also necessitates a

quantum-mechanical approach for analyzing the operation of the rectenna [1].

A rectenna consists of an antenna connected to a diode in which the

electromagnetic radiation received by the antenna is converted to a DC signal by

the diode. Such an arrangement is shown in Fig. 2.1. The conversion from AC to

DC occurs due to the difference in resistance of the diode for the positive and the

negative cycles of the oscillating current induced on the antenna. Depending on

whether the DC signal is sensed by an amplifier or applied across a load resistance,

the rectenna can be configured as a detector or as a photovoltaic rectifier.

For microwave frequencies, rectennas with power-conversion efficiencies

greater than 90 % have been demonstrated [2] and are used in a variety of energy

transmission [3] and harvesting [4, 5] applications. For higher frequencies,

detectors based on rectennas have been widely investigated [6]. Photovoltaic

rectification using rectennas was originally proposed [7] and patented [8] several

decades ago, and has recently gained significant attention [9]. Photovoltaic

rectification is still in the research phase. Several components need to come

together to enable high efficiency optical rectennas for energy harvesting. Ideally,

a low-loss broadband antenna collecting coherent radiation has to be impedance

matched to an ultra-high-frequency diode with a large nonlinearity. Several

chapters that follow in this book are dedicated to describing these features.

In Sect. 2.2 of this chapter we explain the rectification mechanism of diodes

operating at optical frequencies. In Sect. 2.3 we outline the requirements for a

rectenna to have efficient rectification. We derive the solar cell characteristics for

rectennas in Sect. 2.4. Sections 2.2, 2.3, 2.4 are based on our publications that describe

the operatingmechanism of optical rectennas [10] and the performance limits forMIM

diode based rectennas [11]. In Sect. 2.5 we use the nonequilibrium Green’s function

(NEGF) formalism to derive the illuminated I(V) characteristics for non-tunneling

based diodes. The result of this derivation makes the semiclassical analysis carried out

for MIM diodes more generally applicable to any rectifying element.
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2.2 Diode Characteristics at Optical Frequencies

The choice of a suitable diode for a rectenna is based on its operating frequency.

The transit time of charges in semiconductor p-n junction diodes limits their

frequency of operation to the gigahertz range [12]. At 35 GHz, rectennas using

GaAs Schottky diodes have been designed [13]. Schottky diodes are also used at

terahertz and far-infrared frequencies [14, 15]. However, beyond 12 THz the MIM

tunnel diode is required to provide a sufficiently fast response for rectennas [16].

The MIM tunnel diode has been a potential candidate for use in optical frequency

rectennas as its nonlinearity is based on the femtosecond-fast transport mechanism of

quantum tunneling [17, 18]. Even though they have been successfully used in

detectors operating at gigahertz [19], the efficiency of MIM-based rectennas has

been limited at higher frequencies because of RC time constant limitations

[20–22]. Here we use the MIM tunnel diode as an example to facilitate a

semiclassical quantum-mechanical derivation for operating characteristics of tunnel

diodes at high frequency.

Only at a relatively low frequency can a tunnel diode be considered as a classical

rectifier [22]. This frequency is typically in the terahertz range. The rectification is

no longer classical if the voltage corresponding to the energy of the incident

photons (photon voltage: Vph ¼ �hω/e) is comparable to or greater than the

voltage scale over which curvature in the diode’s I(V ) curve is significant. For

MIM tunnel diodes the nonlinearity is on the scale of a few tenths of a volt while

optical frequencies have a photon voltage in the range of 1 V. Therefore, to study

rectification at optical frequencies, we use a semiclassical analysis based on

photon-assisted tunneling (PAT) [23, 24].

To study the interaction of an optical excitation with electrons tunneling across a

barrier, consider an MIM tunnel diode that is biased at a DC voltage of VD and

excited by an AC signal of amplitude Vω and frequency ω. The overall voltage

across the diode is

Vdiode ¼ VD þ Vω cosðωtÞ (2.1)

Antenna 

Diode 
Low pass

filter  Load 

Fig. 2.1 Schematic of an

antenna-coupled diode

rectifier, also known as

a rectenna [© IEEE]
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Classically the effect of the AC signal is modeled by modulating the Fermi level

on either side of the tunnel junction while holding the other side at a fixed potential,

as shown in Fig. 2.2.

Effectively, the low frequency AC signal results in an excursion along the DC

I(V ) curve around a bias point given by VD.

For a high-frequency signal, the effect of Vω is accounted through a time

dependent term in the Hamiltonian H for the contact [23], written as

H ¼ H0 þ eVω cosðωtÞ (2.2)

whereH0 is the unperturbed Hamiltonian in the contact for which the corresponding

wavefunction is of the form

ψðx; y; z; tÞ ¼ f ðx; y; zÞe�iEt=�h (2.3)

where E is the total energy of electron including the absolute Fermi energy (EF).

The harmonic perturbation in (2.2) leads to an additional phase term whose effect

can be modeled with a time dependent term in the wavefunction as

ψðx; y; z; tÞ ¼ f ðx; y; zÞe�iEt=�h exp �ði=�hÞ
Z
t

dt0 eVω cosðωt0Þ
� �

(2.4)

Integrating over time and using the Jacobi-Anger expansion, the wavefunction

can be written as

ψðx; y; z; tÞ ¼ f ðx; y; zÞ
Xþ1

n¼�1
Jn

eVω

�hω

� �
e�iðEþn�hωÞt=�h (2.5)

where Jn is the Bessel function of order n. The modified wavefunction indicates that

an electron in the metal, previously at energy E, can now be located at a multitude

eVD

eVω

electron tunneling

x

E

EF,R

EF,L

Metal Insulator Metal

Fig. 2.2 Classical model to

account for the applied AC

signal that modulates the

Fermi level on one side of the

tunnel junction [© IOP [10]]
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of energies separated by the photon energy (�hω) as shown in Fig. 2.3. The

amplitude of the electron being found at energy E + n�hω is given by the Bessel

function of order n, where n corresponds to the number of photons absorbed or

emitted by the electron in a multiphoton process. The time dependent wavefunction

is normalized since the infinite sum of the square of Bessel terms is unity. The

electron density is proportional to the modulus squared of the wavefunction and

therefore to the square of the Bessel function.

Heuristically, the effect of the wavefunction modulation on the tunnel current is

to modulate all such single-electron states with steps of DC voltage proportional to

Vph [24]. Thus in addition to the DC voltage, there is a voltage nVph that is applied

across the diode with a weighting factor J2nðαÞ, where α ¼ eVω/Vph. The DC current

under illumination is then given by

IillumðVD;VωÞ
X1
n¼�1

J2nðαÞIdarkðVD þ nVphÞ (2.6)

where Idark(V) is the tunnel current in the un-illuminated diode.

We use (2.6) in Sect. 2.4 to study the solar cell characteristics of rectennas.

The above derivation is based on MIM tunnel diodes. In Sect. 2.5, we derive a

generalized theory for optical rectification that extends the applicability of (2.6) to

the more general case of any mesoscopic diode operating at high frequency.

Here we limit the analysis to include illumination at a single frequency.

Characteristics of a diode illuminated by several frequencies are given in Chap. 3.

In the remaining part of this section, we discuss the ramifications of

single-frequency PAT on diode resistance and nonlinearity at optical frequencies.

The importance of the diode responsivity is discussed in Sect. 2.3.1.

Apart from the DC component of the tunnel current given by (2.6), there is a

time-dependent current that consists of the harmonics of ω that is given by [25]

Iω ¼
X1

n¼�1
JnðαÞ½Jnþ1ðαÞ þ Jn�1ðαÞ� IdarkðVD þ nVphÞ (2.7)

eVD

E

E+

E-

electron tunneling

x

EFig. 2.3 An electron at

energy E absorbs or emits

photons. The transmission

probability of the electron

increases at higher energies

[© IOP [10]]
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Combining (2.6) and (2.7), we obtain the semiclassical diode resistance (RSC
D )

and the semiclassical diode responsivity (βSCi ) using the equations [24]

RSC
D ¼ Vω

Iω
; βSCi ¼ ΔI

1
2
VωIω

(2.8)

where the superscript SC denotes the use of the semiclassical PAT formulation.

The ΔI is the incremental DC current due to the illumination and is given by

ΔI ¼ Iillum � Idark.
From here on we simplify the analysis by assuming α � 1 such that Bessel

function terms only up to first order in n are required. This implies a small probability

for multiple photon emission or absorption. One can mathematically verify that

higher order terms are negligible for α � 1 by using the approximation for Bessel

functions J0(α) � 1 � α2/4 and J�n(α) � (�α/2)n/(n!). This gives the ratio of Jn + 1/

Jn ¼ α/(n + 1) implying sharply decreasing contribution with increasing n at small

α. From (2.7), to first order in n(¼�1, 0, 1), RSC
D is given by [25]

RSC
D ¼ 2Vph

IdarkðVD þ VphÞ � IdarkðVD � VphÞ�!
classical 1

I0
(2.9)

which in the classical limit (�hω ! 0) leads to the differential resistance. We note

that the semiclassical resistance is the reciprocal of the slope of a secant between

two points in the I(V ) curve separated by 2Vph rather than the tangential slope at a

single point for the classical case.

The semiclassical responsivity is similarly found from the first-order

approximation of (2.6) and (2.7), and is given by [25]

βSCi ¼ 1

Vph

IdarkðVD þ VphÞ � 2IdarkðVDÞ þ IdarkðVD � VphÞ
IdarkðVD þ VphÞ � IdarkðVD � VphÞ

� �
�!classical 1

2

I00

I0
(2.10)

In the limit of small photon energies this leads to the classical formula for

responsivity given by 1/2 the ratio of second derivative of current to the first

derivative.

Classically, the diode resistance and responsivity are independent of frequency.

The semiclassical resistance and responsivity deviate from the classical values at

high photon energies. In Fig. 2.4 we plot the semiclassical resistance and

responsivity at zero bias vs. the photon energy (�hω) for a simulated diode I(V)
[11]. As the photon energy increases, the resistance of the diode decreases and the

responsivity decreases. For large �hω the responsivity approaches the limit of e/�hω,
which is the maximum achievable responsivity corresponding to one electron per

photon. Therefore, even a diode with poor quantum efficiency at low �hω becomes

more efficient and thus adequate at high �hω.
In the next section, we discuss the impact of the semiclassical diode parameters

on the rectification efficiency and impedance matching with the antenna.
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2.3 Rectenna Requirements

2.3.1 Overview

The rectification efficiency (η) of a rectenna is determined by the combination of

several factors as given in (2.11) [26]. The efficiency (η) is not the same as the

conventionally accepted efficiency of a solar cell. Rather this is closer in definition

to the quantum efficiency or spectral response of a solar cell that provides the

short-circuit current produced for a given amount of input AC power. The overall

cell efficiency for rectenna solar cells is derived in Chap. 3.

η ¼ ηaηsηcηj (2.11)

where

• ηa is the efficiency of coupling the incident EM radiation to the antenna and

depends on the radiation pattern of the antenna as well as its bandwidth. Another

consideration for ηa that is important for energy harvesting is the area over which

radiation received from the source (e.g., sun) is coherent and can be captured by

a single antenna element. For the case of the sun, the coherence radius is a few

10’s of microns. Chapter 4 gives a comprehensive study of this criterion.

• ηs is the efficiency with which the collected energy propagates to the junction of
the antenna and the diode and is largely governed by losses in the antenna, such

as resistive loss at high frequencies. For a more detailed description of antenna

efficiency, the reader is referred to Chaps. 11, 12, and 13.

Fig. 2.4 Variation of

classically and

semiclassically calculated

resistance and responsivity

vs. photon energy at

VD ¼ 0 V. As the photon

energy increases, the

semiclassical resistance

becomes significantly lower

than the classical value and

the semiclassical

responsivity approaches the

value corresponding to unity

quantum efficiency [© IEEE

[11]]
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• ηc is the coupling efficiency between the antenna and the diode and requires the

antenna and the diode to be impedance matched for efficient power transfer.

Series resistance losses in the diode also need to be considered. We elaborate on

impedance matching in Sect. 2.3.2.

• ηj is the efficiency of rectifying the power received in the diode. The efficiency

of the diode junction can be expressed in terms of its current responsivity

ηj ¼ βi.

The ηj sets the overall units of η to be A/W implying the DC current produced per

watt of incident radiation. An underlying assumption in the above discussion is that

the diode has a low RC time constant and an intrinsically high speed. The low RC

time constant is needed to ensure that the AC excitation across the diode is not

shorted out due to a large diode capacitance. As we derive next, this requirement

imposes a frequency limitation on rectennas, different from the requirement for

high-speed transport of the charges.

2.3.2 Impedance Matching and RC Cutoff

The antenna-to-diode power-coupling efficiency (ηc) is given by the ratio of the AC
power delivered to the diode resistance to the power sourced by the antenna. This

ratio can be calculated from the analysis of a circuit of the rectenna shown in

Fig. 2.5. The antenna is modeled by a Thévenin equivalent and the diode by the

parallel combination of a capacitor and a voltage-dependent resistor. For simplicity

of analysis, series resistance of the diode [13] and reactance of the antenna are

assumed to be negligible.

The power-coupling efficiency at a frequency ω is given by [20]

ηc ¼
PAC;RD

PA

¼
4 RARD

ðRAþRDÞ2

1þ ω RARD

ðRAþRDÞCD

� �2 (2.12)

~ 

RA

VA

RDCD

Diode Antenna 

Fig. 2.5 A small signal circuit representation of the rectenna for determining the antenna-to-diode

coupling efficiency [11]. The antenna is modeled as a voltage source in series with a resistance and

the MIM diode is modeled as a resistor in parallel with a capacitor [© IEEE [11]]
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where PA ¼ V2
A=ð8RAÞ. In the above equation, the numerator gives the impedance

match between the antenna and the diode with RA ¼ RD leading to efficient power

transfer.

In Fig. 2.5, if the capacitive branch is open-circuit due to a small capacitance

or low frequency, the circuit is essentially a voltage divider between RA and RD.

The denominator in (2.12) determines the cutoff frequency of the rectenna, which is

based on the RC time constant determined by the resistance in parallel with antenna

the diode resistance and capacitance. Above the cutoff frequency, the capacitive

impedance of the diode is smaller than the parallel resistance, leading to inefficient

coupling of power from the antenna to the diode resistor.

As stated earlier, the responsivity form of the overall efficiency (η) indicates
the DC current generated normalized to 1 W of incident radiation. In a PV rectifier,

the performance measure of interest is the power-conversion efficiency (ηload)
which is given by the ratio of the DC power delivered to the load and the

incident AC power

ηload ¼
Pload

PA

¼ I2DC;loadRload

PA

(2.13)

The IDC,load is proportional to the square of DC current dissipated in the load

implying [22]

ηload / β2i PAη
2
c (2.14)

Keeping aside the antenna efficiency components, the power-conversion

efficiency depends on four factors: the diode responsivity, the strength of the AC

signal that depends on the power received by the rectenna, the impedance match

between the antenna and the diode, and the RC time constant of the circuit.

Efficient coupling of power from the antenna to the diode requires impedance

matching between them. Moreover, having a small RC time constant for the circuit

implies that the product of the antenna resistance (RA) in parallel with the diode

resistance (RD) and the diode capacitance (CD) must be smaller than 1/ω for the

radiation incident on the rectenna. This ensures that the signal from the antenna

drops across the diode resistor (RD) and is not shorted out by CD. Therefore the

conditions of RD ¼ RA and ω(RA||RD)CD � 1 lead to a unity coupling efficiency,

as can be seen from (2.12). The parameters that can be varied to achieve these

conditions are the diode area, the antenna resistance, and the composition of the

diode. Obtaining a sufficiently low diode resistance to match the antenna

impedance is a challenge, and so for this analysis we choose the Ni/NiO

(1.5 nm)/Ni MIM diode, which has an extremely low resistance and was used in

several high-frequency rectennas [6, 27, 28].

Typical antenna impedances are on the order of 100 Ω [6]. We choose a nominal

antenna impedance of 377 Ω, but as will become apparent a different impedance

would not help. We vary the diode area, which changes the diode resistance and

capacitance. In Fig. 2.6, we show the ηcoupling vs. the diode edge length for a
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classically and semiclassically calculated diode resistance. The semiclassical

resistance, which results from a secant between two points on the I(V ) curve, is
lower than the classical resistance, as shown in Fig. 2.6, and gives a higher ηcoupling.
The peak in both the curves occurs at the same edge length, and is an outcome of the

balance between the needs for impedance matching and low cutoff frequency.

The coupling efficiency is limited by the combined effect of impedance

matching given by the numerator (ideally RD/RA ¼ 1) and cutoff frequency given

by the denominator (ideally ω(RA||RD)CD ¼ 0) in (2.12). Unity coupling efficiency

under the ideal conditions occurs for different edge lengths, as shown in Fig. 2.6a.

The overall efficiency is given by the smaller of the two values, limited by the two

curves in Fig. 2.7a, which leads to the peak in Fig. 2.6. Increasing the diode

resistance 10 times lowers the coupling efficiency by the same factor.

The tradeoff between impedance match to the antenna, for which a small RD is

desired, and a high cutoff frequency, for which a small CD is desired, is fundamental

for parallel-plate devices. Varying the antenna impedance results in a simple

translation of both curves in tandem such that the diode edge length for peak

efficiency changes as shown in Fig. 2.7a. With an increase in antenna impedance

a higher RD can be accommodated, allowing the diode area to be smaller, and

resulting in a desirable smaller CD. However, the higher RA also increases the

(RA||RD)CD time constant.

The condition under which the constraints simultaneously lead to a high

coupling efficiency is obtained by combining

ωðRAjjRDÞCD � 1 and
RD

RA

¼ 1 ) RDCD � 2

ω
(2.15)

Fig. 2.6 Effect of varying the edge length (for a square diode area) on the antenna-to-diode

coupling efficiency [11]. The peak in efficiency is due to the tradeoff between impedance match

and cutoff frequency. A simulated I(V ) curve is used to calculate the resistance of the Ni–NiO

(1.5 nm)–Ni diode using the classical and the semiclassical (Eph ¼ 1.4 eV, λair ¼ 0.88 μm) forms

of (2.9). The barrier height of Ni–NiO is 0.2 eV [28] [© IEEE [11]]
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For the model Ni–NiO–Ni diode discussed above, this condition is not satisfied for

near-IR frequencies (λ ¼ 0.88 μm), where 2/ω ¼ 9.4 � 10�16 s is much smaller

than RDCD ¼ 8.5 � 10�14 s. It is satisfied for wavelengths greater than 80 μm.

Due to the parallel-plate structure of the MIM diodes, the RDCD time constant is

independent of the diode area and is determined solely by the composition of the

MIM diode. As already noted, the Ni/NiO/Ni diode is an extremely low resistance

diode and NiO has a small relative dielectric constant (εr) of 17 at 30 THz. Even if

one could substitute the oxide with a material having comparable resistance and

lower capacitance (best case of εr ¼ 1), the RDCD would still be off by an order of

magnitude for near-IR operation. Putting practicality aside completely, a near-ideal

resistance would result from a breakdown-level current density of 107 A/cm2 at,

say, 0.1 V, giving a resistance of 10�8Ω-cm2. A near-ideal capacitance would result

from a vacuum dielectric separated by a relatively large 10 nm, giving a capacitance

of ~10�7 F/cm2. The resulting RDCD would be ~10�15 s, again too large for efficient

coupling at visible wavelengths.

For coupling, the relevant resistance is the differential resistance rather than the

absolute resistance. A highly nonlinear diode with a sharp turn-on at a positive

voltage would therefore give a lower resistance than what we have calculated

Fig. 2.7 Antenna-to-diode coupling efficiency as a function of diode edge length. The effect

of impedance match is separated from cutoff frequency for two antenna impedance values:

(a) RA ¼ 377 Ω, and (b) RA ¼ 10 kΩ. The parallel combination of RA and RD is denoted by RP.

The curves labeled RD/RA show the coupling efficiency when only the impedance match is the

limiting factor and those labeled ωRPCD show the coupling efficiency when only the cutoff

frequency is the limiting factor. The maximum efficiency occurs for an edge length at the small

peak where the two curves coincide [© IEEE [11]]
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above. Alas, this does not help at optical frequencies because the differential

resistance in the semiclassical case is the inverse of the slope of the secant

between points that are �hω/e above and below the operating voltage. At the large

�hω of optical frequencies the secant mutes the effect of a sharp turn in the I(V )
characteristics.

Several techniques are being investigated to overcome the RC constraint and

include variations on MIM diodes as well as completely new diode structures. The

coupling efficiency of MIM-diode rectennas is improved at longer wavelengths,

where the condition imposed by (2.15) is easier to meet. The RDCD can also be

artificially reduced by compensating the capacitance of the MIM diode with an

inductive element, but this is difficult to achieve over a broad spectrum. In Chap. 7,

a sharp tip MIM diode is described that can potentially reduce the capacitance while

maintaining a low resistance. A design that can circumvent the restrictions imposed

on the coupling efficiency is the MIM traveling-wave rectifier [21, 29]. Akin to a

transmission line where the geometry determines the impedance, the distributed RC

enhances the coupling between the antenna and the traveling-wave structure.

However, losses in the metallic regions of the waveguide limit its efficiency as

the frequency approaches that of visible light.

A new type of diode called the geometric diode is described in Chap. 10 and can

potentially satisfy the requirements of low resistance and capacitance. It rectifies

based on a nanoscale asymmetry in the shape of the conducting material that leads

to a preferential direction for flow of charge carriers. The absence of a tunneling

barrier leads to an extremely low resistance. The planar structure of the geometric

diode lifts the capacitance constraint imposed by the parallel-plate structure of the

MIM diode.

2.4 Operation at Optical Frequency

In this section we use the PAT theory developed in Sect. 2.2 to derive the

illuminated I(V ) characteristics of ideal diodes, i.e., for the case of an illuminated

rectenna. The power-generating regime is shown to occur in the second quadrant

of the I(V ) curve. We assume that a constant AC voltage is applied across the diode

as the DC bias voltage is varied. This assumption helps to develop the

understanding of how an illuminated I(V ) curve can be obtained starting with

dark I(V ) using (2.6). In practice, the magnitude of the AC voltage would vary

with the DC bias as explained and dealt with in Chap. 3. Due to the dependence of

the diode resistance on AC voltage as given by (2.9), the two assumptions lead to

significantly different shapes of the illuminated I(V ) curves.
Using the first-order approximation of (2.6), corresponding to α � 1, the current

under illumination can be expressed as

IillumðVDÞ ¼ 1� α2

4

� �2

IdarkðVDÞ þ α2

4
ðIdarkðVD þ VphÞ þ IdarkðVD � VphÞÞ (2.16)
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with the first term on the right-hand side representing the dark current due to

electrons that are in the unexcited state. The second and third terms represent the

current resulting from electrons that undergo a net absorption or emission of a

photon, respectively, together denoted as ΔI. To understand the effect of ΔI on
Iillum, consider an ideal diode with the piecewise linear Idark shown in Fig. 2.8a.

As shown in Fig. 2.8b, the two terms in ΔI modify Idark such that a positive current

can flow even at zero or a negative DC bias. The sum of the three current

components of (2.16) is shown in Fig. 2.8c with power generation occurring in

the second-quadrant operation of the diode (in contrast to the fourth-quadrant for a

conventional solar cell). The DC current generated depends on Vω via α and thereby

the strength of the illumination and the antenna design.

In the illuminated I(V ) curve shown in Fig. 2.8c the voltage-intercept is marked

as Vph, which signifies the maximum negative voltage at which a positive current is

possible. This occurs for a diode with a high forward-to-reverse current ratio.

As seen in the second quadrant of Fig. 2.8c, the triangular illuminated I(V ),
under the assumption of constant Vω, incorrectly suggests a peak efficiency of only

25 %. In Chap. 3, we show that the maximum theoretical efficiency for rectification

of monochromatic illumination is 100 %.

V 

I 

V 

I 

I 

Vph Vph

Vph

Vph

V 

Idark(VD)

Iillum(VD)

J02

J12

Idark(VD)

J-12

Idark(VD+Vph)

Idark(VD-Vph)

a

b

c

Fig. 2.8 (a) Piecewise linear

dark I(V ) curve. (b) Scaled
and voltage-shifted

components of Iillum as given

by (2.16) under the

assumption of constant AC

input voltage. (c) Illuminated

I(V ) curve obtained by

adding the components in

(b). The region of positive

current at negative voltage

corresponds to power

generation [© IOP [10]]
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2.5 Optical Frequency Rectification in Mesoscopic Diodes

In the semiclassical analysis for the optical response of an MIM diode presented in

Sect. 2.2, the I(V) characteristics under illumination are obtained from the DC dark

I(V ) curve of the diode. To make the operating mechanism of optical rectennas,

derived in the previous section, valid for a broader class of diodes a derivation

similar to the Tien and Gordon approach [23], but generalized to be applicable even

to a non-tunneling based device, is required. Such a theory is presented here [1] and

is applicable, for example, to the geometric diode described in Chap. 10.

A mesoscopic junction is categorized as having length-scales comparable to the

electron phase coherence length [30]. An asymmetric mesoscopic junction can

show rectification due to interaction of carriers with the conductor boundaries.

Rectification in such junctions was predicted to occur due to an asymmetric

conductor or an asymmetric illumination in a symmetric conductor [31]. At least

one of these two conditions is necessary. Photovoltaic effect has been observed in

small conductors having geometric asymmetry due to disorder [32] or patterned

asymmetric shapes [1].

Platero and Aguado [33] have reviewed several techniques that can be used to

study photon-assisted transport in semiconductor nanostructures. Other than Tien

and Gordon’s approach, all the analyses culminate in a form requiring numerical

computation of the transport mechanism, and do not provide insights into the

optical behavior through a simple extension of the DC characteristics.

The simplicity of the Tien and Gordon formulation comes with the drawback

that the theory is not gauge-invariant. Another limitation of this method is that it

does not account for charge and current conservation. To ensure conservation, an

AC transport theory such as the one that solves the NEGF and Poisson equations

self-consistently [34] is required. In a geometric diode, the dependence of the

transport properties on the geometry adds to the complexity.

Here we use the NEGF formulation to derive an equation analogous to Tien and

Gordon’s equation given by (2.6) but also applicable to an illuminated mesoscopic

junction. Starting with the Hamiltonian that describes the material and the structure

of the geometric diode, the NEGF approach is used to model geometry-dependent

transport, and interaction of electrons with an AC voltage.

Several approximations are made to enable an analytical relation between the

DC and illuminated characteristics. Even though these approximations limit the

region of applicability of the result, it is nevertheless helpful in understanding

the illuminated characteristics of mesoscopic junctions.

2.5.1 Mesoscopic Junction Under Illumination

The starting point for the derivation is the NEGF theory for an illuminated junction

given by Datta and Anantram [35]. In this section we reproduce and explain some

of their results.
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Consider a mesoscopic junction connected to two contacts, as shown in Fig. 2.9.

It is assumed that charge transport from one contact to the other occurs

phase-coherently, and the coherence is broken only by scattering in the contacts.

Here, the contacts refer to charge reservoirs, much larger than the device region,

held at a fixed potential. Electrons gain or lose energy through scattering in the

contacts. The interaction of charge carriers with photons occurs in the device region

through a time-varying potential V(~r ,t). This interaction, even though inelastic

(changes the energy of charge particles), does not cause phase incoherence.

The energy-domain version of Schrödinger’s equation for the device in the

absence of illumination is [35]

Eþ �h2r2

2m � VSð~rÞ þ i�h
2τφð~r;EÞ

h i
GR

0 ð~r;E;~r 0;E0Þ ¼ δð~r �~r 0ÞδðE� E0Þ
) H0ð~r;EÞGR

0 ð~r;E;~r 0;E0Þ ¼ δð~r �~r 0ÞδðE� E0Þ
(2.17)

where GR
0 is the retarded Green’s function that represents the impulse response of

Schrödinger’s equation. The subscript ‘0’ refers to the Green’s function for the

un-illuminated case. The wavefunction at any energy E can be obtained fromGR
0 . Vs

is the static potential in the device. The τφ is the scattering (phase-breaking) time in

the contacts.

The current in the device is obtained as

I ¼ e�h

Z
dE

Z
dE0
Z

d~r

Z
d~r 0½t21ðE;E0Þf1ðE0Þ � t12ðE0;EÞf2ðEÞ� (2.18)

where f1 and f2 are the Fermi-Dirac distributions in contact 1 and 2 respectively.

The t21(E,E
0) is the transmission from an input energy mode E0 in contact 1 to an

output energy mode E in contact 2, and is given by

t21ðE;E0Þ ¼ �h

τavg

ð ð
~r2contact1
~r 02contact2

d~rd~r 0
jGRð~r;E;~r 0;E0Þj2

4π2τφð~r;EÞτφð~r 0;E0Þ (2.19)

Contact 1: 1 Contact 2: 2Junction: V( r,t)

Fig. 2.9 A two terminal

device with an arbitrary

shape, subjected to an AC

potential V(~r,t)
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The τavg is the time over which the current or the transmission is averaged to find

the DC component. The un-illuminated case is obtained by replacing GR by GR
0 in

(2.19).

Equation (2.18) is different from the usual form for the transport equation that

takes into account the exclusion principle by counting the filled states on one

contact and the empty states on the other. The applicability of this equation for

phase-coherent transport is explained by Landauer [36] and the equation is

explicitly derived by Datta and Anantram [35].

Under illumination, the Schrödinger equation is modified as [35, 37]

H0ð~r;EÞGRð~r;E;~r 0;E0Þ ¼ δð~r �~r 0ÞδðE� E0Þ
þ
X
ω

Vð~r; �hωÞGRð~r;E� �hω;~r 0;E0Þ (2.20)

where V(~r,t) is represented by its Fourier transform components
P

Vð~r; �hωÞ. This
perturbation term added to the RHS is the strength of the broadening due to

interaction with the field [38]. This effect is included via a self-energy similar to

the one used for contacts [34]. Under a first-order Born approximation, the solution

to the equation of motion given by the modified Schrödinger equation in (2.20), is

GRð~r;E;~r 0;E0Þ ¼ GR
0 ð~r;~r 0;EÞδðE� E0Þ

þ
X
ω

Z
d~r 00GR

0 ð~r;~r 00;EÞVð~r 00; �hωÞGR
0 ð~r 00;~r 0;E0ÞδðE� �hω� E0Þ (2.21)

In the presence of illumination, the current is obtained by substituting GR in

(2.19) by the expression in (2.21). The GR can be computed numerically using the

technique described in Chap. 7. However in the next section, we simplify (2.21)

such that the illuminated characteristics can be predicted by an analytical extension

of the DC I(V ) curve.

2.5.2 Projecting Illuminated Characteristics from DC I(V)

We propose two simplifications to the expression forGR given in (2.21). The first is a

uniform strength of interaction with the field over the device area (V(~r,�hω) ¼ V(�hω)).
This is achieved by coupling an AC scalar potential through a gate electrode [39] or

by applying the dipole approximation for a vector potential gauge [22]. The dipole

approximation requires that the wavelength of the EM field be much larger than

the size of the device. This condition is easily satisfied for a MIM diode, and for

small geometric diodes. A further complication in geometric diodes is the field

nonuniformity due to the shape of the conductor. For this, a field strength averaged

over the geometry would serve as an initial correction.
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The second approximation relates to the transport properties of electrons at

energies separated by �hω. Here, we claim that the transport properties defined by

GR do not differ significantly for two energy levels spaced apart by �hω. The GR for

the two energies are similar if the photon energy is small compared to the energy of

electrons. As the majority of conduction occurs due to electrons at the Fermi

surface, the relevant energy for comparison is the Fermi energy (�hω � Ef)

measured with respect to the band edge. This assumption is similar to the nearly

elastic scattering case considered by Datta [38]. The ramifications of this

approximation are discussed at the end of the chapter.

Under these assumptions, (2.21) is simplified to

GRð~r;E;~r 0;E0Þ ¼ GR
0 ð~r;~r 0;EÞδðE� E0Þ

þ
X
ω

Vð�hωÞ
Z

d~r 00GR
0 ð~r;~r 0;EÞδðE� �hω� E0Þ (2.22)

where the Green’s function in the integral is simplified under the assumption

E � E0 as

GR
0 ð~r;~r 0;EÞ ¼ GR

0 ð~r;~r 00;EÞGR
0 ð~r 00;~r 0;E0Þ (2.23)

The spatial integral on the RHS of (2.22) leads to the volume of the device region

(vol.) as there is no dependence on~r 00 in the integrand. The Green’s function under
illumination then becomes

GRð~r;E;~r 0;E0Þ ¼ GR
0 ð~r;~r 0;EÞδðE� E0Þ

þ vol:
X
ω

Vð�hωÞGR
0 ð~r;~r 0;EÞδðE� �hω� E0Þ (2.24)

Substituting the above expression in (2.19)

t21ðE;E0Þ / GR
0 ð~r;~r 0;EÞδðE� E0Þ þ vol:

X
ω

Vð�hωÞGR
0 ð~r;~r 0EÞδðE� �hω� E0Þ

�����
�����
2

¼ jGR
0 ð~r;~r 0EÞj2δ2ðE� E0Þ

þ GR
0 ð~r;~r 0;EÞδðE� E0Þ þ vol:

X
ω

Vð�hωÞGR
0 ð~r;~r 0;EÞδðE� �hω� E0Þ

 !cc
þ cc

" #

þ vol:
X
ω

Vð�hωÞGR
0 ð~r;~r 0;EÞδðE� �hω� E0Þ

�����
�����
2

(2.25)
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where cc denotes complex conjugate. The term inside the square bracket has a

product of two delta-functions δ(E � E0)*δ(E � �hω � E0), which is always zero.

Also, in the third term, the square of the summation over delta-functions is equal to

the summation of the squares as all cross terms with different ω are always zero due

to the product of delta-functions δ(E � �hω1 � E0)*δ(E � �hω2 � E0). Therefore
(2.25) reduces to

t21ðE;E0Þ / jGR
0 ð~r;~r 0;EÞj2δðE� E0Þ þ Vol�X

ω

jVð�hωÞj2jGR
0 ð~r;~r 0;EÞj2δðE� �hω� E0Þ (2.26)

The second term in the above equation represents a first-order,

low-photon-energy correction to the Green’s function for the un-illuminated case.

This leads to the expression for illum given by

Iillum ¼ e�h2

T

Z
dE

Z
dE0
Z
~r2

d~r

Z
~r1

d~r 0

�

jGR
0 ð~r;~r 0;EÞj2δðE� E0Þ
4π2τφð~r;EÞτφð~r 0;E 0Þ f1ðE 0Þ � jGR

0 ð~r 0;~r;E 0Þj2δðE 0 � EÞ
4π2τφð~r;EÞτφð~r 0;E 0Þ f2ðEÞ

þ vol:2
X
ω

jVð�hωÞj2
jGR

0 ð~r;~r 0;EÞj2δðE� �hω� E 0Þ
4π2τφð~r;EÞτφð~r 0;E 0Þ f1ðE 0Þ

� jGR
0 ð~r 0;~r;EÞj2δðE 0 � �hω� EÞ
4π2τφð~r;EÞτφð~r 0;E 0Þ f2ðEÞ

8>>>><
>>>>:

9>>>>=
>>>>;

2
66666666664

3
77777777775

(2.27)

We now perform the integral with respect to E0 in (2.27) using the sifting

property of the delta function. Under the condition �hω � Ef, we also

approximate that τφ does not vary significantly from E to E + �hω. The validity of

this is in-line with the approximation made for GR in that the interaction of an

electron with the reservoirs is similar at two closely spaced energies. With this

simplification, the illum is given by

Iillum ¼ e�h2

T

R
dE
R
~r2
d~r
R
~r1
d~r 0

�

jGR
0 ð~r;~r 0;EÞj2

4π2τφð~r;EÞτφð~r 0;EÞ f1ðEÞ �
jGR

0 ð~r 0;~r;E 0Þj2
4π2τφð~r;EÞτφð~r 0;EÞ f2ðEÞ

þ vol:2
X
ω

jVð�hωÞj2
jGR

0 ð~r;~r 0;EÞj2
4π2τφð~r;EÞτφð~r 0;EÞ f1ðE� �hωÞ

� jGR
0 ð~r 0;~r;EÞj2δðE 0 � �hω� EÞ
4π2τφð~r;EÞτφð~r 0;E 0Þ f2ðEÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666666666664

3
777777777775

(2.28)
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which can be simplified to

Iillum ¼ e�h2

T

R
dE
R
~r2
d~r
R
~r1
d~r 0

�

jGR
0 ð~r;~r 0;EÞj2

4π2τφð~r;EÞτφð~r 0;EÞ ff1ðEÞ � f2ðEÞg

þ vol:2
X
ω

jVð�hωÞj2 jGR
0 ð~r;~r 0;EÞj2

4π2τφð~r;EÞτφð~r 0;EÞ ff1ðE� �hωÞ � f2ðEÞg

2
66664

3
77775

(2.29)

The second term in the above equation that represents the additional current due

to illumination and can be written in terms of the un-illuminated (dark) current given

by the first term. This is done by combining the �hω with the DC voltage applied

between the two contacts (VD). Assuming that contact 2 is the ground, (2.29) can be

written in terms of the Fermi distribution f(E) ¼ [1 + exp((E � Ef)/kT)]
�1 as

Iillum ¼ e�h2

T

R
dE
R
~r2
d~r
R
~r1
d~r 0

�

jGR
0 ð~r;~r 0;EÞj2

4π2τφð~r;EÞτφð~r 0;EÞ ff ðE� eVDÞ � f ðEÞg

þ vol:2
X
ω

jVð�hωÞj2 jGR
0 ð~r;~r 0;EÞj2

4π2τφð~r;EÞτφð~r 0;EÞ ff ðE� ðeVD þ �hωÞÞ � f ðEÞg

2
66664

3
77775
(2.30)

This can be interpreted as

IillumðVDÞ ¼ IdarkðVDÞ þ vol:2
X
ω

jVð�hωÞj2Idark VD þ �hω

e

� �
(2.31)

2.5.3 Discussion

Equation (2.31) allows an analytical evaluation of the illuminated characteristics

from a dark I(V ) curve, similar to the first-order approximation of (2.6) depicted

graphically using a piecewise linear dark I(V ) curve in Fig. 2.8. Although the

equation for an MIM diode was derived for a single-frequency illumination, its

multispectral extension also consists of an integral over the contribution from

different frequencies [24].

In analogy with the high-frequency operating mechanism described for an MIM

diode in Fig. 2.2, (2.31) indicates that the interaction of the electrons in the device

region is equivalent to the modulation of electron energies in the contact. This

simplified picture for the interaction emerges because the electronic transport
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properties are assumed to be constant in a narrow range of energies given by the

additional photon energy (�hω) acquired by the electrons in the device region. The

derivation presented here essentially transferred the electron interaction with

the photon from the device region to the contacts.

The assumption of �hω � Ef is the most significant consideration of the

derivation. Earlier, we stated this condition without analyzing its physical

significance. Transport properties, e.g., tunneling probability in an MIM diode,

can be a strong function of energy. However, in the case of MIM diodes the

photon–electron interaction occurs only in the contacts due to the absence of

electrons in the insulator. This is the basis for the semiclassical theory described

in Sect. 2.2. In a mesoscopic junction like the geometric diode, due to the absence of

an energy barrier the transmission is a weaker function of energy than in MIM

diodes. Therefore, in narrow energy ranges, the assumption of constant transport

behavior has greater validity. Ultimately, the effect of the added photon energy is

relative to the existing electron-energy. If this energy is large, such that the

transmission is highly likely, the change in transmission by adding photon energy

will be small. A measure of validity for the existing electron energy is the Fermi

level and hence the condition �hω � Ef.

A final point of discussion concerns the material for the thin-film used in the

device region. Equation (2.31) is applicable under the assumption that the photon

energy (Eph) is small compared to the Fermi level (Ef). This depends on the value of

the Ef. For metals, Ef is on the order of a few electron-volts so that the result holds

even at far-to-mid-infrared. However, for a material like graphene, the Ef is closer

to zero, but can be varied by applying a gate-voltage or by doping.

In summary, we have shown that the I(V ) characteristics for a general

mesoscopic junction can be described by a formalism similar to that used for

MIM diodes, within the limits of some assumptions. Therefore the optical

frequency rectification analysis that was presented in this chapter applies not just

to MIM diodes but also to a wider range of optical frequency rectifiers.
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