
C O V E R  F E A T U R E

54  July/August 20181527-3342/18©2018IEEE

Digital Object Identifier 10.1109/MMM.2018.2822202

Date of publication: 4 June 2018

Microwave Class-E  
Power Amplifiers

Zoya Popović  
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Zoya Popović (Zoya.Popovic@colorado.edu) is with the Department of Electrical, Computer, and Energy  
Engineering, University of Colorado, Boulder, United States. José A. García (joseangel.garcia@unican.es)  

is with the Department of Communications Engineering, University of Cantabria, Santander, Spain.

Im
ag

e
 l

Ic
e

n
s

e
d

 b
y

 In
g

r
a

m
 P

u
b

lI
s

h
In

g



July/August 2018  55

S
ince Nathan Sokal’s invention of the class-E 
power amplifier (PA), the vast majority of 
class-E results have been reported at kilo-
hertz and millihertz frequencies, but the con-
cept is increasingly applied in the ultrahigh-

frequency (UHF) [1]–[13], microwave [14]–[20], and even 
millimeter-wave range [21]. The goal of this article is to 
briefly review some interesting concepts concerning 
high-frequency class-E PAs and related circuits. (The 
article on page 26 of this issue, “A History of Switching-
Mode Class-E Techniques” by Andrei Grebennikov and 
Frederick H. Raab, provides a historical overview of 
class-E amplifier development.)

Frequency Scaling of the Class-E PA
Scaling class-E operation to higher frequencies pres-
ents a number of challenges. The most obvious is that 
the maximum frequency of class-E operation derived 
for the ideal class-E circuit is

 / . ,f I C V56 5,max maxE OUT ds, ^ h  (1)

where Imax  is the maximum drain-to-source current 
of the switching device and Vds  its drain-to-source 
biasing voltage. The transistor output capacitance 
COUT  limits the frequency range of class-E operation, 
as does the drain-to-source voltage, which implies 
lower output power. COUT  can be de-embedded from 
a nonlinear model or measured large-signal param-
eters and used as a part of the output matching circuit. 
The class-E mode of operation is defined by the time-
domain waveforms for a 50% duty cycle and assuming 
soft switching (both voltage and the derivative of the 
voltage are zero). 

Assuming a high-Q output circuit and ideal bias 
choke, the current and voltage waveforms across the 

transistor can be derived, and the Fourier expansion 
can be used to find the theoretical impedance at the 
fundamental frequency:

 . / .Z C e0 28E
j49

OUT~= c^ h  (2)

This expression obtained from idealized circuit 
assumptions is the impedance at the transistor’s vir-
tual drain (current source); if this impedance is pre-
sented to a device, it will operate in class-E mode at 
frequencies governed by (1) and (2). 

Designing an output circuit with an impedance ZE  
at the switching frequency is a good starting point for 
design. The theory behind (2) assumes that all higher 
harmonics are open-circuited. At lower frequencies, 
this condition, along with a high-Q output circuit and a 
nearly ideal choke, can be implemented with lumped ele-
ments. However, in the UHF and microwave frequency 
range, lumped elements often have parasitics that limit 
the Q-factor and are difficult to predict. Conversely, 
distributed elements have lower loss and become suffi-
ciently small. 

Figure 1(a) shows a transmission-line implementa-
tion of a class-E PA with only the second harmonic 
termination [1]. The line and stub near the transis-
tor output reference plane (at the current source) ter-
minate the second harmonic in an open circuit and, 
together with the other two transmission lines, present 
ZE  from (2) at the fundamental frequency.

Active device internal parasitics are substantial at 
high frequencies and difficult to de-embed from non-
linear models, so the design of class-E waveforms at 
the virtual drain (where they are specified) poses a 
challenge. Additionally, the nonlinearity of the output 
capacitance affects the voltage and current time-domain 
waveforms and increases the voltage or current stress 
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Figure 1. (a) The transmission-line circuit topology for high-frequency class-E PAs with only the second harmonic open-
circuited. (b) The associated switch voltage waveform. MESFET: metal–semiconductor field-effect transistor.
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on the device, lowering the output power, as shown in 
Figure 2 [48]. 

Another limitation is the device breakdown voltage, 
which needs to be at least 3.56 times the supply voltage 
for class-E operation; therefore, at high frequencies the 
output power is typically reduced. Other design chal-
lenges include input matching (switch control signal), 
bias line design, losses in the matching network, and 
low-frequency instabilities. Finally, the ideal class-E 
impedance given by (2) traces a counterclockwise loop 
on the Smith chart with increasing frequency, limiting 
class-E operational bandwidth.

UHF Class-E PAs
The standard series-resonant circuit at the output of 
a class-E PA, as proposed by Sokal, requires a high 
loaded Q-factor. But at UHF and low microwave fre-
quencies, the parasitics associated with a high induc-
tance value may result in self-resonance below the 
most significant higher-order harmonics, making 
proper harmonic terminations difficult [22]. A parallel 
resonant circuit tuned to provide an open condition at 
the second or third harmonic, or any convenient fre-
quency between them, is shown in Figure 3(a) and dis-
cussed in [2]. 

A network that assures an impedance value closer 
to the optimum for both the second and third har-
monics implements the parallel resonance with the 
coil’s parasitic capacitance [3]. If the value is lowered to 
below the one that self-resonates between f2  and ,f3  
its resistive losses may be reduced. The resulting lower 
Q-factor at the fundamental widens the bandwidth, 
while the degradation in efficiency may be negligible 
as long as the impedance at the most relevant harmon-
ics remains high enough. 

The output network is completed with a series reac-
tance and a shunt capacitor to provide the optimum 
class-E termination at the fundamental. For the choke 
inductance ,Lb  a coil self-resonating at or near the fun-
damental may be selected and placed as in Figure 3(a) 
to avoid any undesired perturbation over the synthe-
sized reactive terminations at f2  and .f3

Alternative lumped-element implementations, e.g., 
[4], have been derived from the frequency-domain 
transmission-line synthesis approach illustrated in 
Figure 1. The use of coils and capacitors has also been 
reported at UHF for other topologies in the continuum 
of class-E modes. 

For any value of the dc-feed inductance Lb  in 
Figure 3(b), optimum real and imaginary parts of 
the impedance at the fundamental satisfying zero-
voltage switching (ZVS) and zero-voltage derivative 
switching conditions can be found [5] as a function 
of / .q L C1 b out$=  Tracing a counterclockwise tra-
jectory with frequency on a Smith chart, a simple 
LCR series network, like the one in Figure 3(b), may 
be adjusted to intercept it at two points, with the 
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Figure 2. When the device output capacitance is nonlinear 
[ /p 1 2=-  is a square-root ( )C V  nonlinearity], the 
voltage peak theoretically increases by 28% for this simple 
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Figure 3. The schematics of lumped-element topologies at the UHF band: (a) a wide-band class-E PA, (b) a continuous-mode 
class-E PA, and (c) a class-E PA for variable load operation.

The class-E mode of operation 
is defined by the time-domain 
waveforms for a 50% duty cycle  
and assuming soft switching  
(both voltage and the derivative  
of the voltage are zero). 
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Figure 4. (a) A wide-band lumped-element class-E PA in the 800-MHz UHF band (left) with the measured frequency 
response (right) [10]. (b) A wide-band continuous-mode class-E PA (left) and the measured frequency response (right) [6]. 
PAE: power-added efficiency.
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Figure 5. A class-E PA for variable-load operation (left) with the measured results versus loading resistance (right) [9].

frequency spacing defining the bandwidth versus 
efficiency tradeoff [6]. The parallel resonant circuit 
would, in this case, play the same function as that 
described previously.

The original series-resonant topology is highly sensi-
tive to load variations, and lumped-element networks that 
guarantee ZVS operation along a wide range of resistive 
loads have been proposed. In the UHF and low microwave 
bands, a few implementation solutions with load-insensi-
tive operation have been demonstrated, based either on 
the addition of a transmission line equivalent network [7] 
or on the .q 1 3=  case [8] of the continuous class-E space 

described in [5]. Figure 3(c) presents a slight modification 
to the topology in Figure 3(a), based on pioneering work 
with low-frequency metal-oxide-semiconductor (MOS) 
field-effect transistor (FET) class-E inverters [23]. An 
inductance-to-ground allows approximation of the opti-
mum trajectory for efficient load modulation [9].

Examples of lumped-element UHF implemen-
tations of the previously discussed topologies are 
shown in Figures 3, 4, and 5. All are based on the 
Wolfspeed CGH35030F packaged gallium nitride 
(GaN) high-electron-mobility transistor (HEMT), 
using high-Q coils from Coilcraft’s air core series and 
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high-Q multilayer capacitors from American Technical 
Ceramics’ 100B series. In the amplifier in Figure 4(a), the 
class-E operation is approximated over a wide band-
width, trading resonant circuit Q-factors at the funda-
mental and second/third harmonics. A peak efficiency 
of 85.7% was measured and maintained above 80% 
over a 230-MHz frequency range (27% fractional band-
width) with 4.2-dB of output power variation.

The dc-feed inductance in the PA shown in Fig-
ure 4(b) is carefully selected from commercially available 
values for continuous-mode class-E operation. The output 
capacitance of the CGH35030F transistor allows operation 
directly across a 50-Ω load in the desired frequency band. 
The parallel resonant circuit for the f2  and f3  termina-
tions is provided by the parasitic capacitance of the coil in 
the output network. An efficiency value above 80% was 
measured for the 630–890-MHz frequency range (34% of 
fractional bandwidth) with a peak of 86.6%. The output 
power variation in that range is only 2.3 dB.

The amplifier in Figure 5 follows the schematic in 
Figure 3(c) for load-modulated but narrow-band ZVS 

operation. With an 85% efficiency peak at 50-Ω loading 
condition, the measured efficiency was still as high as 
70% at 10 dB of power backoff.

The first transmission-line implementations at 0.5, 1, 
and 2 GHz using a CLY5 gallium arsenide (GaAs) metal-
semiconductor FET (MESFET) are shown in Figure 6 
[1]. Here, the theoretical degradation with increasing 
frequency for a given device is demonstrated experi-
mentally, and the circuits are designed analytically 
for first-pass success. Above 1 GHz, the device param-
eters do not satisfy (1), and the mode of operation first 
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Figure 6. (a) A photo of first reported transmission-line 
0.5-, 1-, and 2-GHz class-E PAs implemented with the 
CLY5 GaAs MESFET [1]. (b) A summary of measured and 
theoretically predicted performance.
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becomes a suboptimal class-E mode, degrading into 
class-AB as the frequency increases further. The output 
power could not be well predicted due to inadequate 
nonlinear models in 1995.

Transmission-line class-E amplifiers have also 
been implemented at lower UHF frequencies when 
high output power levels might exceed the voltage/
current handling of lumped components. A photo of 
such a class-E PA is shown in Figure 7 [11]. The 370-MHz 
PA is designed around a GaN-on-silicon carbide (SiC) 

HEMT and delivers 65 W with PAE of 82%, 45 W with 
PAE of 84%, and supply voltages of 35 and 28 V, respec-
tively. Starting from class-E ideal impedance values, 
load pull under class-E conditions is used for device 
characterization and the matching network design. A 
weighted Euclidean distance is defined to enable trad-
eoff studies between output power and efficiency in 
achieving the final amplifier design [12].

In [12], class-E UHF PAs using four different devices 
are compared: 
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1) Nitronex NPTB00050 (NITX050) GaN-on-Si HEMT 
(breakdown ,V 100 Vbr =  )C 9 pFout =  

2) RF Micro Devices (RFMD) RF3932 (RFM060) GaN-
on-SiC HEMT ( ,V 150 Vbr =  )C 9 pFout =  

3)  Cree CRF24060 (CREE060) SiC MESFET 
( ,V 120 Vbr =  )C 11 pFout =  

4) Agere AGR09045E (LDMOS045) Si laterally dif-
fused MOS (LDMOS) ( ,V 65 Vbr =  ).C 23 pFout =  

The PAs were all designed using ideal class-E equa-
tions as a starting point, and then a load pull was per-
formed to determine the power-efficiency tradeoff. 

The final results measured on all four PAs, includ-
ing performance over supply voltage, are shown in 
Figure 8, demonstrating more than 45 W and greater 
than 80% efficiency in all cases, with the GaN HEMT 
amplifiers exhibiting the best overall performance in 
the UHF range (2008). A detailed comparison in terms 
of design parameters, amplitude modulation–ampli-
tude modulation, and amplitude modulation–phase 

modulation performance, as well as performance over 
supply voltage, is presented in [12].

Microwave Class-E Amplifiers
A discussion of frequency scaling related to class-E per-
formance up to the X-band is reviewed nicely in [13] and 
shown on example GaAs monolithic microwave inte-
grated circuit (MMIC) and GaN hybrid PAs. A number 
of hybrid class-E amplifiers have been reported at the 
C-band, e.g., [14] and X-band [15]–[20] with GaAs FETs. 
MMIC class-E PAs are demonstrated in GaAs [13], [15], 
[20], indium phosphide (InP) [16], GaN [19], and comple-
mentary MOS (CMOS)/Si germanium (SiGe) [21], [24]. 
In 1998, a GaS MESFET (FLK052WG) class-E microstrip 
PA that delivers 0.61 W with a compressed gain of 9.8 
dB, a drain efficiency of 81%, and a PAE of 72% at 5 
GHz was integrated in a spatial combining array [14]. 
Antiresonant slot antennas were used to present the 
harmonic terminations. 

More recently, several X-band GaAs class-E PAs 
have been demonstrated with PAE > 60%. Figure 9 pro-
vides an example in which a class-E PA stage is incor-
porated into a two-stage PA, with the first stage also 
operated in class-E mode, reaching a total PAE of 52% 
with a drain efficiency for the second stage of 62% [16].

Figure 10 shows a reconfigurable 10-GHz PA with 
an output matching network that enables the PA to 
operate in either linear class-A/AB or high-efficiency 
class-E using two Sandia microelectromechanical 
system (MEMS) ohmic switches. The insertion loss of 
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Active device internal parasitics are 
substantial at high frequencies and 
difficult to de-embed from nonlinear 
models, so the design of class-E 
waveforms at the virtual drain (where 
they are specified) poses a challenge. 
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the matching network in different states is below 0.3 dB, 
causing a few points of degradation in PAE compared 
to a nonreconfigurable static PA executed on the 
same alumina substrate and with the same GaAs 
MESFET die [18].

One of the first reported GaAs class-E X-band PAs 
is discussed in [15]. A photo of the single-stage MMIC 
along with its measured performance is presented in 
Figure 11, showing PAE of 65% at a power of 24 dBm. 
MMIC-integrated class-E PAs at the X-band include an 

InP two-stage amplifier, shown in Figure 12 [16], that 
had a measured PAE of 52% and compared well with 
the hybrid GaAs version in [16] in terms of efficiency 
points lost due to the first stage. In the case of two-stage 
class-E PAs [17], the interstage network can be designed 
to provide input harmonic waveshaping for a more 
squared waveform that controls the transistor operat-
ing as a switch. 

More recently, several Si-based lower-power class-E 
PAs have been reported, in which the stacking of devices 

Conventional
Reconfigurable

Conventional
Reconfigurable

Conventional
Reconfigurable

Conventional
Reconfigurable

Class-A

Class-E

Pout (1 dB)

19.7 dBm

20.3 dBm

G (1 dB)

10 dB

8 dB

PAE

27%

61%

0

–0.2

–0.4
IL

 (
dB

) –0.6

–0.8

–1

–1.2

–1.4

Class-E (with MEMS)

Class-A: Switches Open
ZA at Fundamental

Class-E: Switches Closed
ZE at Fundamental, Open at
Second Harmonic

7 8 9 10 11 12 13
Frequency (GHz)

Conventional
(No MEMS)

Conventional
(No MEMS)

Reconfigurable
(MEMS Up)

Reconfigurable
(MEMS Down)

Class-A PA Class-E PA
25

20

15

10

70
60
50
40
30

η D
, P

A
E

 (
%

)

20
10
0

5
–2 0 2 4 6

Pin (dBm)

P
ou

t (
dB

m
),

 G
ai

n 
(d

B
)

8 10 12 14

–2 0 2 4 6
Pin (dBm)

8 10 12 14

25

20

15

10

70
60
50
40
30

η D
, P

A
E

 (
%

)

20
10
0

5
–2 0 2 4 6

Pin (dBm)

P
ou

t (
dB

m
),

 G
ai

n 
(d

B
)

8 10 12 14

–2 0 2 4 6
Pin (dBm)

8 10 12 14

Pout Pout

Gain Gain

PAE

PAE

ηD

ηD

(b)(a)

(c)

Class-E (No MEMS)

Class-A (No MEMS)
Class-A (with MEMS)

Figure 10. (a) A photo of a reconfigurable class-A/E PA with two MEMS switches [18] (top) and a table showing the 
performance parameters (bottom). (b) The plot shows the measured insertion loss of the matching networks with a degradation 
due to reconfigurability of, at most, 0.2 dB at 10 GHz. (c) The measured data in class-A (left) and class-E (right) modes for the 
10-GHz mode-reconfigurable PA. The dashed lines show efficiency loss due to the reconfigurable MEMS network compared 
to a static class-E PA. 



62  July/August 2018

is used to overcome the breakdown voltage limitation. 
In [24], a SiGe PA at 2.3–2.4 GHz demonstrated 62–65% 
efficiency using on-chip lumped elements, while in [25] 
a 5.3-GHz CMOS class-E PA showed PAE of 42% with 
a power density of 532 mW/mm2. Other class-E PAs 
demonstrated in Si at lower microwave frequencies 
are exmined in, e.g., [26]–[32], with up to 1 W of output 
power level in the 1–2-GHz range. The millimeter-wave 
PA described in [21] demonstrates a CMOS IC at 93 GHz 
with PAE > 40%, showing that Sokal’s class-E concept can 
be extended to extremely high frequencies (Figure 13).

Class-E PAs for High PAPR Signal Transmitters
Ideal class-E equations detailed in, e.g., [16] and [22] 
show that the output power across a fixed load is pro-
portional to the square of the drain (collector) voltage,

 . . ,P R C V0 5 1 86    DE D
2 2

OUT OUTr ~= ^ h  (3)

which, in turn, implies that class-E PAs are very well 
suited to envelope tracking for efficiency improvement 
when the signal has a high peak-to-average power 
ratio (PAPR) [33]. Tracking using a class-E PA and a 
class-E dc–dc converter with excellent efficiencies in 
the 1-GHz range is demonstrated in [34]. The linearity 
of such an envelope-tracked transmitter is analyzed 
experimentally in [20] at a 10-GHz carrier with a two-
tone signal. A two-stage 150-nm GaN-on-SiC PA is 
explained with the output stage designed using ideal 
class-E equations as a starting point and a power over 
10 W, Gsat  > 20 dB, and peak PAE > 60% [19], where the 
efficiency remains above 50% at 10-dB backoff. This PA 
was specifically designed for supply modulation, i.e., 
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to be stable with minimal capacitance in the drain bias 
line, enabling broadband signal transmission through 
the bias network. The measured efficiency curves are 
shown in Figure 14.

Another way to increase efficiency for high PAPR sig-
nals is via outphasing. It has been shown that class-E PAs 
lend themselves easily to a nonisolated (Chireix) architec-
ture [7], [35]–[37].

The class-E PA is classically a tuned topology that, 
in practice, has approximately 10% bandwidth over 
which the frequency, power, and PAE remain close 
to the maximum. Extending the bandwidth of class-E 
PAs using a matching circuit design is investigated in, 
e.g., [38]–[40]. In [38], over 80% efficiency is obtained 
in a low-power class-E PAE from 1.7–2.7 GHz by input 
matching that includes second-harmonic optimiza-
tion. In [39], the PAE exceeds 63% over the 0.9–2.2-GHz 
band, with 3-dB variation in output power. In [40], 
single-ended and differential matching networks are 

investigated to obtain a 1.7–2.2-GHz operational band-
width with a class-E PA implemented in 90-nm CMOS 
operating in suboptimal mode, with efficiency over 
42% and power above 25 dBm.

Conclusions
Other diverse aspects of class-E microwave circuits include 
oscillators, frequency multipliers, rectifiers, and dc–dc 
converters. The important issue of class-E amplifier stabil-
ity is examined in [41], while [42] discusses the effects of 
parameter tolerances on class-E behavior. While rectifiers 
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More recently, several Si-based 
lower-power class-E PAs have been 
reported, in which the stacking of 
devices is used to overcome the 
breakdown voltage limitation.
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and dc–dc converters are a topic of a separate publication 
[43], Figures 15 and 16 show examples of microwave-fre-
quency class-E oscillators [44], [45] and multipliers [46]. A 
class-E oscillating ring antenna at 10 GHz uses one mode 
of the ring as a directional coupler for feedback to a class-E 
amplifier and a different mode for radiation (Figure 15). 

This compact, efficient oscillator is a complete Doppler 
radar, because the gate bias controls the frequency of oscil-
lation and the oscillator behaves as a self-oscillating mixer. 
Figure 16 offers a photo of a hybrid 10.4–20.8 class-E fre-
quency doubler, along with time-domain waveforms and 
measured conversion gain and drain efficiency.
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Spatial power combining of 16 or more class-E PAs is 
demonstrated in [47]. Figure 17 shows the circuit side of 
an example 10-GHz array in which the 16 PAs are fed with 
a corporate Wilkinson combiner feed network, while the 
outputs are combined in free space upon radiation from 
a 16-element in-phase-fed patch-antenna array. The free-
space combining efficiency is estimated to be 80%, which 
is higher than a four-level corporate network at 10 GHz.

In summary, we have presented a very brief over-
view that can provide only a glimpse into the vast 
area of microwave class-E PAs resulting from Nathan 
Sokal’s pioneering work.
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