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Prof. Mark Hernández

Date

The final copy of this thesis has been examined by the signatories, and we

Find that both the content and the form meet acceptable presentation standards

Of scholarly work in the above mentioned discipline.

mailto:ramirezv@colorado.edu
mailto:ramirezv@colorado.edu
mailto:Zoya.Popovic@Colorado.EDU
mailto:mark.hernandez@colorado.edu


Rámirez Vélez, Mabel Delice (Ph.D., Electrical Engineering)

Image analysis for realistic electromagnetic imaging systems

Thesis directed by Prof. Zoya Popović

This thesis focuses on the choice and implementation of different image and sig-

nal processing algorithms adapted to address specific hardware challenges in realistic

electromagnetic imaging systems and their applications. A wide range of imaging sys-

tems and frequencies with related image processing needs is studied: (1) low-frequency

medical brain activity imaging at kHz frequencies for epileptic seizure detection; (2)

near-field microwave scanning in the several hundreds of MHz range for non-destructive

silicon chip defect detection; (3) Synthetic Aperture Radar (SAR) in the 8-12GHz band

for automatic focusing of ground maps; (4) multispectral infrared and visible images for

embedded target detection; and (5) passive broadband imaging from 100GHz to several

THz for concealed weapon detection.

As with many imaging systems and object recognition applications, there exists a

need for pre-processing raw data provided by the imager to improve the quality of the

measured scene. In the cases studied in this work, the following limit the image qual-

ity and processing requirements: high data dimensionality; low signal-to-noise ratio;

scanning position drifts; unknown target characteristics; low number of pixels; broad-

band integration; and detector non-uniformities. In the widely published fields of image

processing and imaging systems, the design of image processing algorithms that match

hardware limitations has been lacking, and this is precisely what is addressed in this

thesis. The techniques used in this work, as they apply to the five imaging systems

listed above, include:

• dimensionality reduction based on principal component analysis and Laplacian

Eigenmaps, applied to epilepsy detection and multispectral IR imaging;

• two dimensional interpolation using windowing and filtering, applied to near-filed

scanning, SAR and THz imaging;
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• manifold learning and classification, applied to epilepsy detection, multispectral

IR and THz imaging;

• dynamic background correction and contrast enhancement, applied to THz imag-

ing; and

• thresholding, applied to data obtained by all five imaging systems.

These image and signal analysis techniques are presented in this thesis as an approach

to finding an integrated set of solutions addressing hardware and sensor platform lim-

itations. The trade-offs between performance and optimality of an algorithm solution

were considered, with the need for pseudo-real time analysis in most cases.
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Chapter 1

Introduction

This thesis focuses on the choice and implementation of different image and signal

processing algorithms adapted to address specific hardware challenges in realistic elec-

tromagnetic imaging systems and their applications. A wide range of imaging systems

operating over most of the electromagnetic spectrum , all with related image processing

needs, is studied as summarized in Table 1.1.

Starting from the low frequency end, brain activity imaging at kilohertz (kHz) fre-

quencies obtained with 64 scalp electrodes was processed for epileptic seizure detection.

This required non-linear processing and was done in collaboration with Dr. Mark Spitz

from the University of Colorado - Health Sciences Center, Prof. Dan S. Barth from

the University of Colorado Psychology Department and Prof. François G. Meyer from

the University of Colorado, Electrical, Computer and Energy Engineering Department.

The scalp electroencephalogram (EEG) is a powerful tool for neurophysiology and has

been used extensively to study epilepsy. Modern EEG systems can use up to 128 elec-

trodes to sample and record the time domain electrical activity of the brain [1]. The

signals from the electrodes are mixtures of neural signals and thus, some signal process-

ing needs to be applied in order to separate them and detect a seizure. Usually, the

EEG recordings are assumed to be a linear combination of and the detection is done by

clinicians by visual inspection of the EEG recordings. This thesis examines the validity

of this assumption by comparing the effectiveness of linear and non-linear processing
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Table 1.1: Realistic electromagnetic imaging systems operating over most of the elec-
tromagnetic spectrum and the related image processing needs discussed in this thesis

Frequency Application Collaboration Modality Resolution Processing Outcome

kHz

medical UC-HSC passive, temporal/ PCA+ seizure

(EEG) near-field spectral (1 Hz) nonlinear detection

mapping

MHz

defect NIST active, spatial upsampling sub-

detection (EM) near-field (µm) interpolation surface

detection

GHz

ground MIT- active, spatial filtering, auto-

mapping Lincoln far-field (m) thresholding focusing

Laboratory

THz security

NIST passive, spatial filtering, concealed

(OE) far-field (cm) interpolation weapon

segmentation detection

103THz defense LMCO

passive, spatial (m)/ PCA+ target

far-field spectral (λ ≈ µm) nonlinear detection

mapping

for epileptic seizure detection.

In the megahertz (MHz) range, images from near-field microwave scanning for non-

destructive chip defect detection were processed in order to improve resolution, signal-

to-noise ratio, and enhance sub-pixel features. This work was done in collaboration

with Jonathan D. Chisum in the Microwave Group and Dr. Pavel Kabos’ group in the

Electromagnetics Division at NIST. Near-field microwave probing has been used in the

past few decades for material property measurements by loading a resonant circuit with

the unknown material, usually in the form of a planar slab [2–4]. For example, small

microstrip probes implemented at 900MHz were used for metal conductivity measure-

ments [4]. The probing system described in this work had the goal to dramatically

reduce the size of the resonant probe circuit while preserving the main performance

metrics, such as high quality factor and detection of very small features. The resolution

of the images obtained with this method is limited by the size and height of the probe
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and without interpolation, and filtering of the raw data sub-surface features were not

detectable.

In the gigahertz (GHz) range, autofocus post-processing for X-band Synthetic Aper-

ture Radar was applied to processed radar data in order to eliminated errors due to

uncompensated motion of the aircraft carrying the radar. This work was done in col-

laboration with Dr. Gerald Benitz from the MIT Lincoln Laboratory, Intelligence,

Surveillance and Reconnaissance Group. The algorithms described in this thesis were

included in the LiMIT SAR Testbed, which is used for high resolution ground map-

ping. Existing autofocusing techniques such as eigenvector phase gradient autofocus

algorithm [5] were used as a starting point and the modification detailed in this thesis

includes wavelet denoising and thresholding which improves correction for uncompen-

sated motion errors.

In the terahertz (THz) range, single pixel and linear array broadband passive ra-

diometric images with poor SNR and low pixel count were processed to enable visual

concealed weapon detection. This collaboration was made possible by Dr. Erich Gross-

man and Dr. Charles R. Dietlein in the Optoelectronics Division at NIST, where the

millimeter wave and terahertz passive imagers were developed and calibrated [6–8]. For

concealed weapon detection (CWD) and security, active systems are usually seen as

a health threat and cause privacy concerns. Hence, passive millimeter wave imaging

systems have become preferable in settings such as airport security check points. Re-

cently, several passive millimeter wave imaging systems were set up in selected airports

across the United States for testing and checking passengers for concealed objects [9].

The automation of the detection process is essential and can aid personnel security by

offering faster and more accurate image analysis. Classical image processing, pattern

recognition, and target detection techniques are well fitted for the CWD application.

Finally, in the infrared and visible range (∼1000THz), multispectral narrowband

images were processed by non-linear classification and dimensionality reduction to en-

able embedded target detection [10]. This work was done in collaboration with Lock-

heed Martin in Boulder, Colorado and Prof. François G. Meyer. The application for

3



this work was plume detection for missile seekers. In general, multispectral and hy-

perspectral sensors acquire a large amount of spectral information, e.g., Airborne Vis-

ible/Infrared Imaging Spectrometer (AVIRIS) obtains data between 0.4µm to 2.45µm

at 10 nm intervals in 224 channels. For specific targets a subset of this information is

needed and dimensionality reduction is used to speed up the processing and remove

noise in non-relevant bands.

As with many imaging systems and object recognition applications, there exists a

need for processing raw data provided by the imager to improve the quality of the mea-

sured scene. In the cases studied in this work, the following limit the image quality and

processing requirements: high data dimensionality; low signal-to-noise ratio; scanning

position drifts; unknown target characteristics; low number of pixels; broadband integra-

tion; and detector non-uniformities. In the widely published fields of image processing

and imaging systems, the design of image processing algorithms that match hardware

limitations has been lacking, and this is precisely what is addressed in this thesis. The

techniques used in this work, as they apply to the five imaging systems listed above,

include:

• Dimensionality reduction based on principal component analysis and Laplacian

Eigenmaps, applied to epilepsy detection and multispectral IR imaging. These

are a combination of linear and nonlinear methods that operate on data when

temporal (frequency) resolution is of interest [11,12].

• Two dimensional interpolation using windowing and filtering [13], applied to near-

filed scanning, SAR and THz imaging;

• Manifold learning and classification [10, 12], applied to epilepsy detection, multi-

spectral IR and THz imaging;

• Dynamic background correction and contrast enhancement [14], applied to THz

imaging; and

• Thresholding [13], applied to data obtained by all five imaging systems.
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These image and signal analysis techniques are presented in this thesis as an ap-

proach to finding an integrated set of solutions addressing hardware and sensor plat-

form limitations. The trade-offs between performance and optimality of an algorithm

solution were considered, with the need for pseudo-real time analysis in most cases.

The thesis is organized as follows:

• Because the five imaging systems are often studied in diverse fields of engineering

and physics, a brief background and hardware description is given at the beginning

of every chapter.

• For all imaging applications the raw data was provided by collaborators who have

built the hardware and were familiar with the physical non-idealities of the imaging

systems that needed to be corrected by the processing.

• The lowest frequency application (EEG for epilepsy seizure detection) and the

highest frequency system (IR and visible data for target detection). Both are pro-

cessed by using similar techniques which is a combination of linear and nonlinear

methods. Therefore, the EEG and the hyperspectral imager research is described

in the appendices. The other three applications involve linear processing and

comprise the main body of the thesis.

• Chapter 2 discusses the Synthetic Aperture Radar autofocusing of high resolution

X-band images. In this case, we had little access to the hardware and autofocusing

algorithms already existed. The work in this thesis was an addition to an existing

algorithm and thus a good starting point for introducing the advantages of post-

processing.

• Chapters 3 and 4 present results on the single pixel NIST passive terahertz im-

ager. In this collaboration we had access to the hardware and several relevant

quantities were measured as a starting point for the processing. For example,

Chapter 3 presents measured antenna radiation pattern at 95 GHz and 238 GHz

and in general gives information on the imaging system. Chapter 4 focuses on the

5



specific processing algorithms developed for this hardware.

• Chapter 5 extends the processing for the single pixel imager to a row-based and

conical-based linear array terahertz scanners. All three chapters focus on noise

reduction, feature detection, and correcting for hardware non-idealities such as

varying detector response and non-uniform sampling.

• Chapter 6 presents processed images for a first generation near-field UHF and

microwave scanning probe for sub-surface defect detection on CMOS chips. In

this case, the resolution of the system is low as well as the SNR, filtering, upsam-

pling, and interpolation are necessary to detect differences between two nominally

identical CMOS chips.

The thesis concludes with a discussion and recommendations for future work.
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Chapter 2

Autofocus for High Resolution

X-Band SAR Imagery

This chapter is organized as follows. Section 2.1 gives fundamentals of Synthetic Aper-

ture Radar. Section 2.2 presents a brief theoretical background on EV-PGA, wavelet

decomposition, and wavelet shrinkage. Section 2.3 presents some examples from the

experiments performed on the high resolution X-band SAR imagery, and Section 2.4

contains the final remarks and recommendations based on the results of this work.

2.1 Introduction

Airborne radars are commonly used for ground mapping, environmental monitoring,

and military systems applications. Creating a high resolution image using a radar

requires achieving resolution simultaneously in range and cross-range. This can be done

with an electrically large antenna, which at microwave frequencies can be physically

quite large and difficult to fly on an aircraft. Therefore, aperture synthesis is often

used increase the larger aperture by adding the phase information of each of the radar

returns with accompanying heavy signal processing. There are two main acquisition

modes in synthetic aperture radar: spotlight-mode and strip-map mode. This chapter

will focus mainly on spotlight-mode images which are used in areas where a larger spatial
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resolution is desired. The collection geometry for spotlight mode will be shown in the

next section and the mathematical definitions will follow the conventions used in [15].

The image formation details for the spotlight collection geometry are further discussed

in Sec.2.1.1.

An example of a SAR platform aircraft at Sandia National Laboratories is shown in

Fig. 2.1. The aircraft carries an RF front-end for dual band at both Ka (32.6 - 37.0 GHz)

and Ku (14 - 16GHz)Ku bands. Two spatial resolutions from 1 cm to 2 cm are achieved

from the dual band system. The collection range varies from 2 to 15 km and is processed

into images in real-time. Sample images are shown in Fig. 2.2.

antenna

Figure 2.1: Sandia National Laboratory SAR platform aircraft carrying a complete data
collection system including radar, GPS-aided IMU, fully gimballed antenna, real-time
image formation processor, high capacity data storage system, and optionally a real-
time automatic target recognition processor. Photograph used with permission from
Sandia National Laboratory.

SAR images carry phase information that is extracted from the deconvolution of the

transmitted pulse and returned signal from the scatterer. Generally during acquisition

the acquired signal is processed using on-board motion correction units and adding

global positioning system (GPS) information. Some of the signals can be out of focus

due to uncompensated errors that are left uncorrected by the real-time processing.

These uncompensated errors are produced by, e.g., relative flight trajectory deviations.

8



Traditional algorithms like the phase gradient (PGA) [16], and the eigenvector phase

gradient autofocus (EV-PGA) [5,17] can correct for some of these uncompensated errors.

Additional examples of focused images are shown in Fig. 2.2.

(a) (b)

Figure 2.2: SAR 4 in resolution images obtained by Sandia National Laboratories, (a)
Ka-Band static display of historic rescue helicopters on the ground, (b) Ka-Band C-130’s
on flight line

2.1.1 Spot-light mode SAR image

Following the geometry in Fig. 2.3, the spotlight mode can be seen as a collection of

line integrals of the same reflectivity function along the range direction as pulses are

transmitted at different viewing angles θ. The most relevant characteristic of the SAR

spotlight mode is that the antenna beam always aims at the center of the ground patch

as it moves along the flight path. The transformed coordinates (x̄, ȳ) represent the

cross-range and range directions in the ground plane, rotating (x, y) by the viewing

angle θ. Thus, the coordinate transformation is:

x̄ = x cos(θ) + y sin(θ) (2.1)

ȳ = −x sin(θ) + y cos(θ). (2.2)
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Figure 2.3: Sketch of Synthetic Aperture Radar imaging concept. The pulses are trans-
mitted in the direction of a ground patch as the aircraft moves along x-path. The longer
the flight path the higher the cross-range resolution; creating a longer physical antenna
synthetically by using signal processing. The antenna is steered to continue aim at the
center of the patch.

An integrated microwave reflectivity function can be now defined as pθ(ȳ) as a

function of the scene reflectivity g(x, y). The scene reflectivity g(x, y) is assumed to

be zero outside the circle of radius L, and the reflectivity is

pθ(ȳ) =
∫ L

−L
g(x, y)dx̄ (2.3)

The synthetic aperture is constructed from the flight path of the aircraft as it trans-

mits and receives the pulses. A collection of pθ becomes the acquired SAR image. In

SAR imaging the goal is to estimate a three dimensional radar reflectivity density func-

tion g(x, y, z) obtained from for the ground patch illuminated by the antenna. Also,

g(x, y, z) can be described as a two-dimensional projection of the scene reflectivity func-
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tion onto a plane, as depicted in Fig. 2.4. This figure describes the three-dimensional

signal collection surface created in a SAR spotlight mode as defined in [15]. Each pulse

sent by the radar receives a line segment of data from the ground in 3D Fourier space.

The phase history data on the slant plane lies on a polar raster format on the coordi-

nate axes (X ′, Y ′). The angular orientation of the line in the phase domain is the same

as the direction of the pulse transmission in the image. These samples are projected

on the ground plane turning the (X ′, Y ′) coordinate system into (X,Y ) following a

polar-to-rectangular interpolation. This projection will allow for range spatial frequen-

cies to be transformed the ground range spatial frequencies, leading to a ground-plane

reconstructed image [15].

Y

Y’

Y

X

Z

samples on
slant plane

(polar raster)

projection onto
ground plane

4 /p l

radial position
of annulus

determined by
radar center frequency

grazing angle

length of annulus
determined by radar

bandwidth

angular extent of data
annulus determined by

flight path

Figure 2.4: Three-dimensional signal collection surface in SAR spotlight mode as defined
in [15]. Each pulse gives a line segment of data in 3D Fourier space. The angular
orientation of the line in the phase-history domain is the same as the direction of the
pulse transmission in the image.

In order to reconstruct the image from the phase history, a two-dimensional scene

function, g(x′, y′), can be defined as before and its 2D Fourier transform is G(X ′, Y ′).

The new image is produced by the inverse Fourier transform of the observed data as,
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g(x′, y′) =
∫ ∞

−∞

∫ ∞

−∞
G(X ′, Y ′) expj(x′X′+y′Y ′) dX ′dY ′. (2.4)

The above function g(x′, y′) now becomes the 2-dimensional projected image of the

collected radar returns.

2.1.2 Phase errors on SAR images

When reconstructing a SAR image it is important to be able to calculate relative un-

certainties in the pulse to pulse distance. This is done normally using error correction

equipment on the aircraft, but as the flight path becomes longer, for higher resolution

images, there could be more drift on the flight. These uncertainties can be removed by

using ultra-high-accuracy inertial sensors, but can also be corrected using auto-focus

algorithms which are less costly and can correct demodulation errors independent of

where the error is coming from. Several phase error correction algorithms have been

studied in [5, 16–23]. Some of these techniques use fundamentals on inverse filtering,

e.g., [16, 17], others are based on optimization of sharpness metrics [24, 25]. These al-

gorithms are a type of image restoration mechanisms where the goal is to correct for

unknown phase aberrations. The errors induced in the data are related to Fourier phase

shifts in the imaging data and can be modeled by a constant phase plus a phase ramp.

In the case of spotlight SAR collection mode, a series of pulses are sent to create a

two dimensional ribbon [15]. Using several pulses at different instants in time can in-

duce errors on the range compressed phase data. In order to correct for these errors,

a compensating aperture phase error function is estimated. Letting a new 2D image

corrupted with error be described as:

gε(k, n) = IFFTm {ḡε(k, m)} (2.5)

where m and k are given by the aperture and range positions, respectively, the phase

error function can be estimated from inverse Fourier transforms and basic convolution

theorems. Eqn. 2.5 now turns into,
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gε(k, n) = IFFTm

{
expjφ(m)

}
⊗ g(k, n) (2.6)

From Eqn.2.6, an estimate of the phase-error function can be found. This φ(m) will

provide the correction factor to remove the defocus degradation on the 2D corrupted

image data.

There are two types of errors in the image data: 1) those caused by relative aircraft

motion, and 2) propagation induced errors. Autofocusing algorithms can correct for both

of these cases. Several phase error correction algorithms have been developed previously

to address this problem, e.g. shear averaging [22], sub-aperture autofocus [26], inverse

filtering or phase gradient autofocus (PGA) [16, 17], and a modification of PGA using

eigenvectors [5]. This chapter will focus on the Eigenvector Phase Gradient Autofocus

developed by [5] and a modification proposed here to improve residual noise on the

estimated phase error function.

2.1.3 Autofocusing X-Band SAR imagery

The image shown in Fig. 2.5 is used to demonstrate the need for autofocusing. It was

obtained with an X-band SAR at Ft. Huachuca, Arizona and shows the roof of a gas

station. After the EV-PGA algorithm is applied (Fig. 2.5b), there is obvious improve-

ment in the level of focus, however, sometimes this technique can lead to a correction

where the phase error estimate is noisy. This usually occurs in areas of the image where

the target-to-clutter ratio is small and can be observed in Fig. 2.5b as streaks in the

cross-range direction. The goal of this chapter is to obtain a higher level of focusing by

introducing an additional step in the EV-PGA algorithm.

Given that the data acquisition platform is known to have a smooth motion as the

radar collects the data, it is sensible to assume that the uncompensated errors in the

image should be represented as a smooth version of the estimated phase function. It

becomes of interest to study a technique to enhance the result of this estimator by

using a denoising mechanism. We show that indeed the smoothing reduces the noise

on the phase function leading to an improved focused image. The phase denoising is
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Figure 2.5: Relative airplane motion during image acquisition and uncompensated errors
that remain uncorrected after processing the SAR data result in a unfocused SAR image
due to uncompensated phase errors (a). Top of a Shell gas station. The EV-PGA
algorithm [5] produces a focused image by correcting estimated phase error function
(b). The streaks in the image are phase error estimate noise induced by the algorithm.

implemented as an additional step to EV-PGA developed in [5] and based on the wavelet

shrinkage techniques and thresholding developed in [27, 28]. The wavelet shrinkage

and thresholding is applied to a multi-level wavelet decomposition of the phase only

eigenvector representing the phase error needed to correct the image. An illustration

of the effect of specific phase noise error introduced into a actual image is shown in

Fig. 2.6. This image shows a focused image of six aircrafts on a landing strip taken with

the same SAR as in Fig. 2.5. A noisy quadratic phase error shown in Fig. 2.6(b) has

been synthetically added to it, resulting in defocusing as shown in Fig. 2.6(c). This type
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of defocusing is a characteristic result of uncompensated motion.
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Figure 2.6: Illustration of effects of phase error (a) Focused image of 6 aircraft on landing
strip. (b) Added quadratic phase error which simulates uncompensated relative motion.
The vertical axis is the added phase in radians while the horizontal axis corresponds
to cross-range (columns of the image) (c) Unfocused image of aircraft with quadratic
phase error function and noise added to focused image obtained from EV-PGA.

2.2 Algorithm Background

The Phase Gradient Autofocus (PGA) algorithm proposed in [5] is based on a Maximum

Likelihood algorithm that estimates the phase error function describing the existing ar-

bitrary errors in a SAR image. The EV-PGA is presented as a post processing technique

15



for autofocusing and correcting uncompensated errors in the SAR imagery. Further de-

tails of the derivations of the EV-PGA algorithm are given in [5, 29]. The modification

of EV-PGA in this work is illustrated in Fig. 2.7 as a step incorporated in the original

algorithm prior to error thresholding. After step 5 of Figure 2.7, the output signal is

modified as described below.

Figure 2.7: Flowgraph of the algorithm as described in [5], with a modification shown
in step 6. The phase smoothing and wavelet denoising is applied before the error
thresholding with the purpose of noise reduction in the already processed image.

2.2.1 Wavelet packet decomposition

The Continuous Wavelet Transform (CWT) is applied to the estimated phase signal.

This gives a signal representation on a time-scale domain by decomposing a signal in

a set of orthonormal basis. It is dependent on the choice of a given first wavelet,

referred to as a mother wavelet, Ψs,τ (t). The CWT notation can be represented as

CWT{s(t)} =< s(t), ψs,τ (t) >, where s is the scale and τ is the displacement, and the

mother wavelet is represented by:
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ψs,τ (t) =
1√
s
ψ

(
t− τ

s

)
. (2.7)

To create an efficient and practical algorithm, the CWT is sampled at discrete

intervals. The Discrete Wavelet Transform (DWT) approximates the continuous wavelet

transform by down-sampling the signal on a dyadic scale. Let the DWT for a given signal

s(t) be given by ψa,b =< s(t), ψa,b(t) > where a,b are scaling and shift parameters. The

mother wavelet now becomes,

ψj,b(t) =
1√
2j

ψ

(
t− 2j

2j

)
(2.8)

in which j denotes the scale, b the translation, and j, k are integers.

The discrete wavelet transform can be seen as a filter bank, as shown in Figure 2.8,

g[n] represents a low pass filter and h[n] a high pass. The signal s[n] decomposition into

d[n] and a[n] provides what are referred to as the detail and approximation coefficients,

which are later used to reconstruct the signal.

Higher order frequencies in the function can be filtered to generate a smoother

estimated phase function. Therefore, the decomposition shown in Figure 2.8 is an ap-

propriate representation since it automatically allows elimination of certain frequency

components from the signal. For example, for a decomposition tree with L levels, up

to 2L−1 decomposition coefficients can be eliminated. The more high frequency com-

ponents are eliminated, the smoother the phase function. However, this will be at the

expense of loosing features of the signal that can affect the quality of the focusing. The

algorithm design consists of choosing the number of L levels and the particular h[n] that

will be eliminated in order to achieve optimal focusing. In this case focusing is defined

by the 3-dB beamwidth of a point scatterer spatial pattern.

An efficient mechanism to find the optimum wavelet packet decomposition tree is

described in [30]. Referring to Figure 2.8, the decision to add another decomposition

level is based on the Shannon entropy, E, calculated as follows at each level:

E(yj,k) = −
∑

j,k

(sj,k)
2 log y2

j,k (2.9)
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Figure 2.8: Wavelet packet decomposition tree. The signal s[n] is decomposed at L-
levels. Each stage, L contains a high pass and low pass orthogonal filters given by hi[n]
and gi[n]. These filters are different at each decomposition level. A down-sampling is
used at each level to increase computation efficiency.

where s[n] contains high and low frequency components.

An example of a decomposition using wavelet packets is shown in Figure 2.9 where

the quadratic phase error function obtained from PGA is analyzed with a 3rd order

Coiflet mother wavelet. The choice of Coiflet wavelet was dictated by its compact

support and N number of vanishing moments that are directly related to the desired

smoothness of the function for which the phase error estimate is being analyzed.

2.2.2 Thresholding and denoising

A thresholding technique was used to eliminate the high frequency components per

level of decomposition of s[n]. The methodology used in this work is based on wavelet

shrinkage and soft thresholding described by [27]. Let the signal of interest be s(t) = y.

The wavelet transform and coefficients of y can be represented as w = Wy. The

reconstruction of y is described in terms of a sum of wavelet basis given by

yi =
∑

j,k

wj,kWj,k(i); j = 0, ..., J − 1; k = 0, ..., 2j−1; (2.10)

where J represents the maximum possible level of decomposition dependent on the

length of the signal, N . If wj,k is allowed to be the set of wavelet coefficients for the

PGA estimated phase error function, then the representation of the wavelet decomposi-
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Figure 2.9: Specific example of decomposition algorithm for Fig. 2.8. The initial signal
s[n] is the sampled phase error function that comes from the processed SAR data. In the
first step of decomposition the right hand branch carries the high frequency components
of the signal. The left hand branch contains the main signal information. The goal is
to optimally choose a combination of the coefficients to reconstruct the denoised signal.

tion of y can given by yj,k = wj,k +σzj,k where zj,k is iid noise N(0, 1) (white noise). At

this time the goal becomes the thresholding of yj,k in order to denoise the estimate of

the phase error obtained from EV-PGA. The threshold used in this work is based on a

soft threshold by minimizing the quadratic loss function found on Stein’s Unbiased Risk

Estimator (SURE). Each of the wavelet coefficients per scale in the wavelet decomposi-

tion are taken to be a multivariate normal estimation problem and the threshold, t∗ is

given by t∗ = arg min0≤t≤√2logdSURE(t; y) where y is described above. The reader is

referred to [27] for further proofs and derivations of the thresholding methodology.

2.3 Numerical Experiments

The analysis for this work was performed on a high resolution (0.3 m) X-band SAR

image dataset of size N = M = 6554. The imagery was collected from Ft. Huachuca in

Sierra Vista, Arizona. For all of the results shown in this section, the EV-PGA analysis
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(a) (b) (c)

Figure 2.10: Selected region of Sierra Vista image to show autofocusing results using
eigenvector phase gradient autofocus and EV-PGA with wavelet smoothing: (a) original
unfocused image (b) autofocusing using PGA algorithm, (c)autofocusing PGA with
wavelet smoothing. The gray scale is normalized power in dB.
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Figure 2.11: Comparison of focusing algorithm with and without the addition of de-
noising. The dashed line shows the unfocused scatterer that was degraded by adding
an arbitrary phase error function to the image, the original sample scatterer is shown
in solid line with no symbols, and the auto-focused and denoised sample scatterer (solid
line).

used of 512 samples from the image and computed the sample covariance matrix using 30

contiguous range pulses for every block of the original image. The following experiments

show a comparison of the autofocusing using PGA without using a denoising mechanism
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Figure 2.12: Effects of autofocusing and denoising on the removal of streaks in the image
caused by EV-PGA (a)Unfocused image with induced phase error, (b) Autofocusing
using PGA algorithm, (c)Autofocusing using PGA and denoising.
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applied to the estimate of the phase error function and results of PGA with denoising.

After 8 iterations, the results of the EV-PGA algorithm with and without denoising are

shown.

A common metric used to measure the quality of the autofocusing is to use the

3-dB width of a point-like scatterer spatial impulse response. The spatial response of a

focused scatterer has a narrower main lobe and a significant reduction of the sidelobes

when compared to an unfocused scatterer response. Figure 2.13 shows a particular part

of the image from Figure 2.10 which contains a point-like scatterer. It shows different

levels of focusing corresponding to the two different algorithms. The algorithm presented

in this chapter shows an improved autofocusing effect, although the sidelobes are still

present. However, it is important to note that the addition of the denoising step to EV-

PGA improves the images quality but does not degrade the focus. Figure 2.13 shows

a horizontal cross section of the point scatterer response for the unfocused, and the

focusing algorithm with an ideal point-like scatterer of the same size.

Another benefit of using denoising is the reduction of induced streaking in the image

caused by the autofocusing mechanism. The denoising mechanism improves the quality

of the image and does not degrade the focusing, as it is shown on a 3-dB beamwidths

plots in Fig. 2.13 and 2.11.

2.4 Final Remarks

This work presented an application of wavelet coefficient thresholding for denoising

the phase error estimates obtained from EV-PGA in SAR imagery. As shown in the

experiments, the use of a wavelet denoising mechanism achieves improved focusing on

the image set. Figure 2.13 and 2.11 show a comparison of the 3-dB widths for an ideal

and a focused scatterer from a focused image. When testing the algorithms several

factors were varied: (1) number of eigenvectors, (2) block image size, (3) number of

iterations, (4) overlapping of eigenvectors. The latter was shown not to have an effect.

Intuitively, it makes sense that larger image block should give a better estimation
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Figure 2.13: Impulse response of a selected bright scatterer from the processed SAR
image in Fig 2.12. Comparison of autofocusing methods: (solid line-squares) Unfocused
bright scatterer from image, (solid) Autofocused using PGA, (solid line-circles) Autofo-
cused using PGA with Wavelet Denoising (PGA-Denoise), (dashed) Ideal scatterer for
a known spatial resolution.

of the eigenvectors, and this was indeed confirmed by simulation. This is especially

true for images containing a high content of clutter and an absence of distinctive bright

scatterers. The size increase in the image block provides the estimation process with

more information to generate the estimate of the phase error function. As described

in [5], the EV-PGA achieves the Cramér-Rao lower bound for variance for size images for

large N . Taking into consideration the aforementioned observations, this work proposes
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an increase in the block size of the image from N = 512 to N = 1024 for high resolution

imagery in which there exists a low target-to-clutter ratio. There was an improvement

observed when the number of iterations is increased. As the resolution of the image

increased from 1 m to 0.3 m, it was observed that the convergence of EV-PGA algorithm

did not reach an acceptable set value of variance of the estimator unless the number of

iterations was increased for images with small target-to-clutter ratio.

It should be noted that there exists a tradeoff between the amount of acceptable

variance for the convergence of PGA and the number of iterations. If a larger variance is

set, for example from 5◦to 20◦, to increase the wideband performance, then the algorithm

should be allowed larger block image sizes even if the number of iterations remains set

to a lower value ranging from 8-10. However, it the computational cost of EV-PGA

is not a priority concern, for higher resolution image, the number of iterations should

increase i > 10 and use a suggested block size of N = 1024. The number of eigenvectors

to use for the approximation of the phase error function and the overlapping of one to

two pulses for the covariance estimation did not seem to affect the results of the PGA

autofocusing.

In summary, in this chapter, physical parameters of an airborne radar (velocity,

phase, and range) are described with a two-dimensional function g(x, y) representing

the phase of the reflected radar return. Signal processing methods were then applied

in order to reduce effects of the varying velocity vector. This allows for higher-quality

images obtained at X-band, a wavelength of 3 cm, with a spatial resolution of less than

1m. The next chapter discussed higher spatial resolution (<1 cm) using higher frequency

(>100GHz) imaging by defining an amplitude instead of a phase distribution function

of (x,y). The algorithm presented in this chapter as a modification to EV-PGA was

implemented and used in the Massachusetts Institute of Technology-Lincoln Laboratory

LiMIT SAR Testbed.
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Chapter 3

Single pixel millimeter wave

imaging system: antenna

properties

For a given antenna size, a higher frequency will give higher spatial resolution. For

applications such as concealed weapon detection, a resolution of the order of less than

1 cm is crucial, implying the use of millimeter wave frequencies. The millimeter and

sub-millimeter wave ranges are generally defined as those frequencies between 100 GHz

to 10 THz, with wavelengths in the range of 3 mm to 1µm. Material properties are often

very different in the terahertz frequency region, compared to the lower (microwave) and

higher (optical) frequencies. Measurements for common clothing materials at terahertz,

for example, are shown in [31].

For imaging applications at microwave and terahertz frequencies, two different modal-

ities can be used: 1) active and 2) passive imaging. There have been numerous millime-

ter wave imaging systems developed throughout the years, both in passive and active

modalities. In active imaging systems the signal is dominated by reflections of the signal

emitted by a source. In passive systems, the received signal is the frequency dependent
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black-body emission. The black-body emission is described by Planck’s law,

Wλ(λ, T ) =
(

2πhc2

λ2

)(
1

exphc/λkT −1

)
(3.1)

where c is the speed of light, λ is wavelength, T is absolute temperature in Kelvin,

h is Planck’s constant of 6.625 × 10−34 Ws2. The Boltzmann’s constant is given by

k = 1.3805 × 10−23 W sK−1 and Wλ is radiation emitted by the black-body source

per surface area at a given λ. In a passive imaging system operating at millimeter

wavelengths, the power due to black-body radiation is measured by the imager hardware

and can be expressed in terms of temperature changes. These changes in temperatures

are converted and calibrated into an image displaying each pixel from the acquired

scene as a measure of radiometric temperatures. Each pixel contains the radiometric

temperature information given by,

Trad = ε Tphysical + (1− ε) Tbackground, (3.2)

where Trad, Tphysical, Tbackground are the radiometric, physical and background temper-

atures respectively, and ε is the emissivity of the object.

In [32], a passive single-channel millimeter wave imager at 94 GHz with a 1.2 m

Cassegrain antenna and eight radiometer is presented. This system had the limitation

of not operating in real time. In [33], the authors presented a near real-time application

of a passive millimeter wave imager. The imager had diffraction limited performance

at 25Hz refresh rate using 32 direct detection receivers. The design of this imager is

based on a Schmidt camera design without the use of a corrector plate, expected to be

free of coma and astigmatism aberrations. An illustration for the ray trace and scanner

of the system is shown in [33]. Another variation to the imaging system can be done

by changing the scanning mechanism. Some systems use row-based raster scanning

while others make use of conical scanners to cover larger areas at faster sampling rates.

In [34] the authors use a 35GHz imager with a 1.6m aperture based on a folded conical

scanner. An example of an image acquired by this system is shown in Fig. 3.1. The

pseudo-image plane results on a racetrack field-of-view due to the sampling nature of
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the conical scanner.

(a) (b)

Figure 3.1: Image acquired by folded conical scan imager at 35 GHz with a 1.6 m aper-
ture. The imager has a field of view of 20◦ × 10◦ covering an adult at 4m [33]. (a)
Optical image of outdoor scene, (b) Image sampled with conical scanner at 35 GHz at
4m standoff distance [33].

An example of an imaging system using millimeter wave technology for concealed

weapon detection is described in [35] where the system is derived from microwave

holography techniques using phase and amplitude information recorded over a two-

dimensional aperture to reconstruct a focused image target. In [33] another imaging

system is shown operating at 25 Hz frame update rate using 32 direct rate receivers from

28-33GHz. In the same year, in [36], an antenna coupled thin film micro-bolometer de-

signed for millimeter wave imaging arrays was presented, hence removing the coherent

detection problem raised by previous architectures of active millimeter wave systems.

The passive imaging system for millimeter and sub-millimeter wavelengths shown in

this thesis was developed by Dr.Erich Grossman’s group at NIST in collaboration with

UC-Boulder. The antenna used in the receiver is fabricated on a Si chip and a Nb micro-

bolometer is placed in its feed. The designed bandwidth is around 0.2 THz achieved

by using an ultra-wideband equiangular spiral antenna. Other relevant performance

parameters have been thoroughly discussed elsewhere [37].

As with many imaging systems and object recognition applications there exists a
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need for post-processing raw data provided by the imager to improve the quality of

the measured scene. In this thesis, the following hardware parameters are taken into

account in the image processing:

(1) broadband antenna patterns and coupling to the Gaussian beam of the receiver

(Chapter 3);

(2) geometry of raster based scanning and radiometric temperature calibration (Chap-

ter 4)

(3) detector non-uniformities in an eight element linear array (Chapter 5)

(4) oversampling due to conical scanning of the linear array (Chapter 5)

In this chapter, first a general description of the millimeter wave imaging system

hardware used to collect the broadband images is presented, along with a brief de-

scription of the measurement setup used in the acquisition of radiation patterns for the

broadband antennas and estimation of coupling to a fundamental mode Gaussian beam.

3.1 Prior work on passive imagers

For the images discussed here, simple direct detection with bolometric detectors is used,

as illustrated in 3.2.

A bolometer changes resistance based on incident microwave power and this resis-

tance change is measured by a bridge. Microbolometers much smaller than a wavelength

were introduced by [38], and by reducing the size of the detector the response time and

sensitivity increases. [39–41].In order to increase the capture area of such a small device,

it is placed at a feed point of an antenna.

At millimeter waves the available black-body radiation power is in the order of nW

and longer integration times or broadband antennas are usually required [42]. In the

approach taken here, broadband spiral antennas with integrated micro-bolometer (de-

tectors) are used in order to capture as much power as possible. Traditionally, passive
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Figure 3.2: Basic passive millimeter wave imaging concept measuring the black-body
radiation with an antenna coupled micro-bolometer at the receiver. The input signal is
chopped mechanically at around 1 kHz and measured at the output of a lock-in amplifier.
A scanning mirror (not shown) moves in the horizontal and vertical direction. Each
measured incident power at position (x,y) is recorded onto a 2D array index position
which is then calibrated to convert into a radiometric temperature image.

millimeter wave imaging use heterodyne receiver arrays. However, these present scala-

bility limitations to large arrays because of higher costs. The broadband characteristics

of spiral antennas have shown to maintain good coupling up to 30 THz [2].

Fig. 3.2 shows a block diagram of the antenna-coupled micro-bolometer operation

used to acquire the images shown in Chapters 4 and 5. The input signal is chopped

mechanically at around 1 kHz and measured at the output of a lock-in amplifier. A

scanning mirror moves in the horizontal and vertical direction. The measured incident

power at position (x,y) is recorded onto a 2D array index position which is then cal-

ibrated to convert to a radiometric temperature image. An example of a calibrated

image acquired by this passive millimeter wave imager integrated over a band of 0.1 to

1.2THz is shown in Fig. 3.3 [43].
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Figure 3.3: Temperature (Kelvin) calibrated image of individual at 1 m standoff distance
concealing a metallic gun (right) and anechoic absorber (left) under a rain jacket. The
image was acquired using broadband integration with a single pixel (detector), raster
scanned.

3.2 Equiangular Spiral Antenna

Equiangular spiral antennas are categorized as frequency independent broadband an-

tennas with near constant impedance and have been used extensively for many appli-

cations. The frequency limits of the equiangular spiral antenna are given by the outer

and inner radii dimensions. The outer radius of 380µm determines the lowest frequency

limit of the antenna. The inner distance at the feed point determines the highest de-

signed operating frequency. In this case, a Nb bridge-bolometer with dimensions of

20 nmx 1µmx 24 µm with a high-frequency cutoff of fc = 1.8THz is used. An outline of

a two arm equiangular spiral antenna is shown in Figure 3.4. This antenna is circularly

polarized at higher frequencies, but at lower ones it behaves similarly to a linearly po-

larized dipole. A mathematical explanation for the shape of an equiangular plane spiral

curve is given in [44,45].

A scanning electron microscope (SEM) micrograph of the antenna coupled micro-

bolometer detector used in this work is shown in Figure 3.4 [37]. The spiral antenna is
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Figure 3.4: SEM micrograph of Nb bridge and Al/Nb spiral antenna. Obtained
from [37] c© IEEE. The antenna used as a receiver integrated on a Si chip with a mi-
crobolometer on its feed (inset). The designed bandwidth is around 0.2 THz. It has
been quoted in previous publications [37] to provide noise equivalent temperature dif-
ference (NETD) of 125mK, electrical noise equivalent power (NEP) of 26 fW/

√
Hz and

optical NEP of 0.4 pW/
√

Hz

patterned from an Al/Nb bilayer using electron-beam lithography, and the Nb micro-

bolometer air bridge is formed by selective etching. The micro-bolometer resistance is

matched to the input impedance of the antenna, which is Z ≈ 75Ω [46]. The antenna is

fabricated on a 5 mm square Si chip as shown in the diagram of Fig. 3.5, and a hyper-

hemispherical substrate lens is used to couple the radiation. A detailed characterization

of the detector responsivity is shown in [47] but for most of the measurements shown

here the responsivity was 265 [V/W/mA].

3.2.1 Coupling of an antenna to a Gaussian beam

In the imaging system described in [47], the unpolarized plane waves produced by the

scene are collected by a scanning curved mirror which produces a Gaussian beam. The

antenna and micro-bolometer collect power from this Gaussian beam and therefore the

interaction of the antenna with the Gaussian beam is of interest, since it will define

the pixel of the image. Quasi-optical systems that are designed using Gaussian beams

achieve a balance between nearly lossless propagation and processing of an RF signal
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Figure 3.5: Si square chip with ACMB extension length of the hyper-hemisphere, t =
0.33mm. Thickness of the Si substrate h = 0.5 mm [48].

[49]. Coupling to the fundamental mode Gaussian beam allows for size reduction of the

quasi-optical components in the imaging system.

The electric field in a propagating Gaussian beam is given in [50] as,

E(r, z) = (
2

π ∗ w2
)0.5 exp

(−r2

w2
− jkz − jπ r2

λR
+ jφ0

)
(3.3a)

R = z +
1
z

(
π w2

0

λ

)2

(3.3b)

w = w0

(
1 + (

λ z

π w2
0

)2
)

(3.3c)

Equations (3.3b) and (3.3c) describe the radius of curvature and the beam waist radius

of the Gaussian beam, respectively, as a function of position along the axis of propa-

gation z. The Gaussian beam propagation along z is shown in Fig. 3.6. To find the

coupling to a Gaussian beam of the spiral antenna, Eqn. 3.3a can be simplified and as-

sumed to come from a radiating square aperture with constant phase as it propagates.

In order to estimate the coupling, the electric field given in Eqn. 3.3a is fitted to an ideal

Gaussian distribution estimated using the measured radiation pattern of the spiral an-

tenna. The coupling to the Gaussian beam, or Gaussicity percentage, is then given

by the estimated zero-lag cross-correlation between the measured electric field and its

Gaussian fit.
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Figure 3.6: Normalized electric field intensity simulating a Gaussian beam propagation
as a function of distance, z. The beam radius is wider as it moves away from the beam
waist at z = 0. Both are normalized to the waist.

The optimal fit is found by minimizing the sum square errors (SSE) between a the-

oretical Gaussian beam and the measured data. An example of the optimally achieved

2D fit is shown in Figure 3.2.1. The optimum fit, for this case, was found by searching

a space of µ = {−5, 5} and σ = {δ, 15}. The parameter µ represents the position of the

beam maximum in azimuth and elevation, and σ represents the beam waist at (1/e).

The computation of Gaussicity by means of the overlap integral can be described and

approximated in terms of estimation theory. Specifically, the problem of estimating a

cross-covariance matrix at zero lag, τ , for two random variables X,Y. The multivariate

Gaussian probability density function is given by,

f(X) =
1

2πd/2|Σ|1/2
exp

(
−1

2
(X− µ)T Σ−1(X− µ)

)
(3.4)

where X = (x1, x2, ...xd), the expected value is µ, and Σ is the covariance matrix of X

estimated from E[(X− µx)(X− µx)T ]. The covariance matrix is defined as

Σ =
∫ ∞

−∞
(X− µx)(X− µx)T f(X)dx. (3.5)
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For the case of having two random variables X,Y, the estimation of Σ becomes

Σxy =
∫ ∞

−∞
(X− µx)(Y − µY )T fxy(X,Y)dx (3.6a)

Rxy =
Σxy√
ΣxxΣyy

(3.6b)

where fxy(X,Y) now represents the joint probability density function between X and

Y. In this case, X is given by the measured electric field and Y is the Gaussian fit to

the E-field. Finally, by normalizing Σxy with respect to Σxx and Σyy results in a cross-

correlation matrix, Rxy, in Eqn. 3.6b. Selecting the zero-lag correlation in 3.6b provides

an estimate of the maximum similarity between the measured and fitted electric fields.

For this particular Gaussian fit case a minimum was reached at (µ, σ) = (−1.70, 5.9).

The Gaussicity values obtained using the zero-lag correlation were G = 0.936.
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Figure 3.7: Optimum Gaussian fit to a measured electric field of spiral antenna at
95GHz.

For ideal coupling the Gaussicity is unity and implies that the pixel size is given by

1/e point in the Gaussian profile, which is one standard deviation. For a Gaussicity

smaller than one, the pixel is distorted. In subsequent image processing, this hardware

limitation can be taken into account by different windowing.
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3.3 Measured Radiation Patterns

Different radiation pattern measurements were taken to characterize the spiral antenna

at 95 GHz and 238 GHz. A block diagram of the measurement setup used is shown in

Fig. 3.8. In some cases a lens was used to focus the beam to the detector(f = 14.4 cm

and f = 21 cm). The spiral antenna measured is centered on a 5mm square chip and

placed on the back of a substrate lens of 2 mm radius. The lens and antenna are rotated

by a the stepper motor controlled through a LabView Virtual Instrument. Depending

on the frequency of the measurements two sources were used: a signal generator (HP

83624B) for W-band measurements and a 120 GHz Gunn diode followed by a doubler.

In each case a standard gain horn is coupled to a quasi-optical setup onto a detector.

The bolometer is current biased in an attempt to maximize the signal-to-noise ratio, and

the signal out of the bolometer is amplified and then detected with a lock-in amplifier.

For the measurements at 95 GHz, the source was amplitude modulated at 1.1 kHz

and the bolometer biased at 200µA. At 238 GHz a Gunn oscillator was used followed by a

frequency doubler. The beam was mechanically chopped at 80 Hz and bolometer biased

at 550µA. The Gaussicity for azimuth and elevation were 94% and 98% respectively.

The 3-dB and 10-dB beamwidths for azimuth and elevation are presented in Table 3.3.

We can observe from Table 3.3 that the beam tends to be narrower in elevation than

in azimuth by about 10◦. It should be noted that 95 GHz is well below the designed

system operating frequency range from 0.2GHz to 1.8 THz, and therefore we do not

expect the pattern to be much different than a dipole at the lower frequencies.
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(a)

Figure 3.8: Measurement setup for radiation patterns of spiral antenna at 95 and
238GHz. (a) Block diagram of setup showing the Gunn oscillator followed by a fre-
quency doubler to produce 238 GHz. The beam passes through a set of guiding optics
and polarizers until reaching a focusing element (lens) with f = 21 cm. The rotational
stage is moved with a stepper motor that translates the platform holding the detector
module on horizontal and vertical direction for ± 55 degrees on both axes; creating a
2D pattern measurement.

Table 3.1: Summary of measured beamwidths. Polarization and cut are referenced to
the incident linearly-polarized field; co- and cross-polarization. Co- and cross-polarized
measurements are defined here as those in which the incident linearly-polarized field is
parallel with and perpendicular to the bolometer axis (and DC bias traces), respectively

Frequency 95 GHz 238GHz
Polarization Cross Co Cross Co
−3 dB E-plane 24.7 23.7 21.1 17.5
−10 dB E-plane 65.4 85.7 38.2 29.7
−3 dB H-plane 23.0 29.8 18.3 16.6
−10 dB H-plane 77.4 54.3 32.3 26.7
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Figure 3.9: One-dimensional electric field cuts at 238 GHz and 95 GHz. A cut along
638GHz is also shown for comparison, details in [48]. The electric field is parallel to the
bolometer axis. The azimuth scan is in the same plane.

-0.2

The bolometer axis is taken as collinear to the bias traces extending from the arms of

the antenna. Radiation polarized orthogonal (cross-polarization) to the bolometer near

the lower limit of the operating frequency will not encounter any significant radiating

structures of the antenna or DC traces. On the other hand, co-polarized radiation at

or even below the operating region will still encounter the DC bias traces outside the

antenna, which will tend to act similarly to an electrically-larger loaded dipole. Due

to the lens mount blocking incident radiation at angles greater than 48◦ off broadside,

the measured radiation pattern at these large angles is no longer a function of only the

antenna, but of the entire fixture [47]. The results at 95 GHz for -10 dB co-polarized and

-10 dB cross-polarized were affected by reflections off the mount on the positive elevation

scans. After adjusting the measurements, taking into consideration these reflections,

the E-plane co-polarized -10 dB beamwidth measurement is reduced to 64.2◦ and the

H-plane cross-polarized -10 dB beamwidth becomes 75.8◦.

In summary, from the measured radiation pattern we can calculate the Gaussicity at

the two frequencies to be 94% and 98% respectively. In subsequent processing described

in the next chapter, this quantity had an influence on the choice of windows and two-
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Figure 3.10: Two dimensional radiation pattern measured at 238GHz. The incident
electric field is linearly polarized and lies in the elevation plane, as well as the bolometer
axis. The -3 dB beamwidths are 16.0◦ and 17.5◦ in azimuth and elevation, respectively.
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Figure 3.11: One dimensional cuts along horizontal and vertical axis at 0◦ from 2D
patterns at 238 GHz. A Gaussian fit for both cases is also illustrated. The Gaussian fits
are used to calculate the antenna’s coupling to a Gaussian beam.

dimensional filters used.
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Chapter 4

Single pixel millimeter wave

imaging system: image processing

4.1 Introduction

This chapter presents a set of images acquired by the millimeter wave system described

in Chapter 3 and discusses image processing with the goal of background noise sup-

pression, edge detection. The images were acquired by: 1) linear scanning of a single

pixel detector, 2) raster scanning a linear array of detectors, 3 conically scanning a lin-

ear array of detectors. The 0.1 to 1.2 THz images have 30,000 pixels and the goal is

to detect concealed objects under clothing for images of a person at a range of 0.8 m-

1m with an integration time of 30 ms per pixel. The background temperature cali-

bration is performed with a known hot-spot at 330 K, and the measured background

fluctuation was 200-500 mK. Further details of the imaging system have been presented

previously [6, 51–53].

Prior to image processing, the measured relative power data is calibrated and trans-

formed into a radiometric temperature image in Kelvin. The algorithm presented here is

described in Fig. 4.1. The image is pre-processed using an adaptive spatial noise removal

filter which eliminates white Gaussian noise that is present in the scene and is caused by

instrumentation. After filtering the image, a distance metric is computed on a pixel by
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pixel basis. The image is then divided into eight different clusters. Each of the pixels are

grouped based on the information obtained by the Euclidean and Mahalanobis distance

calculation. The number of clusters is selected as a compromise between minimizing the

centroid error within each cluster while maintaining a reasonable pixel count per cluster.

Some prior knowledge of the scene is used for determining the number of clusters, e.g.

knowing that the isothermal human body should be one cluster. Spatial information

is added to the algorithm expecting that spatially neighboring pixels will not contain

drastic temperature changes. This type of post-processing has been done in the past

for hyperspectral image classification [54,55].

Figure 4.1: Algorithm for the segmentation of indoor passive Terahertz images for
concealed weapon detection

4.2 Segmentation Algorithm

Unsupervised pattern recognition techniques offer the advantage of automatic clustering

of any given dataset without the need of a priori class information. In unsupervised

mechanisms, the clustering is performed by computing a similarity measure across the

pixels in the image by a given distance metric. An illustration of pixel clustering is

depicted in Fig. 4.2. In this figure, each colored function is a histogram of pixels with

similar temperature values in the original calibrated image. The thresholds divide each

of the groups depending on the temperature range of the pixels. The pixel similarity

is only measured based on temperature. A commonly used clustering technique is
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Figure 4.2: Sketch of pixel grouping defined by clustering algorithm. Each colored
function is a histogram of pixels with similar temperature values in the calibrated image.
The thresholds divide each of the groups depending on the temperature range of the
pixels. The pixel similarity is only measured based on temperature, spatial proximity
information is not considered in the clustering stage, but it is used in post-processing
addition to further divide or combine the pixels in their corresponding clusters [54,55].

the C-means clustering. This algorithm groups statistically similar data points by the

information obtained from the Euclidean distance and the estimated mean for each of

the classes. The Euclidean distance measures the similarity between pixel values xi and

xj as

d2
E(xi, xj) = (xi − xj)T (xi − xj) = |xi − xj |2. (4.1)

In this case, the pixels are one dimensional: xi and xj are single valued and are

measured in degrees Kelvin. Therefore, points in the image containing similar radiomet-

ric temperatures will be considered close to each other, although they can be spatially

separated. The iterative procedure of the traditional C-means algorithm with Euclidean

distances will not be discussed in this paper and can be found in a number of refer-

ences [56, 57]. In this work, the Mahalanobis distance was used as the metric. This

metric is similar to the Euclidean distance, however it also takes into consideration the

variability of the sample points. The Mahalanobis distance is given by
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d2
M (xi,xj) = (xi − xj)T Σ−1(xi − xj) =

|xi − xj |2
σ

, (4.2)

where Σ is the covariance matrix defined as the expected value of
[
(xi − µi)(xj − µj)T

]

and can be reduced to the standard deviation, σ, for single valued pixels. It can be

observed that Eqn. (4.1) is the special case of Eqn. (4.2) when Σ = I.

The segmentation algorithm images is divided in two stages: (1) segment the tem-

perature image data with a clustering algorithm; and (2) post-processing: addition of

spatial information using k-nearest neighbors (k-NN). The k-NN algorithm [58] com-

putes the spatial distance from a sample point to another. An unknown sample is

classified to a nearest or similar sample point from the set. In this paper, the k-NN is

used as the second stage of the algorithm. Sample points contained in the 2x2 nearest

neighborhood is used to determine the final segmentation. The prescribed segmenta-

tion of the pixels in all images obtained with the single pixel imager is shown in Fig. 4.2

and is a result of the qualitative similarities between many images taken under similar

conditions (e.g., indoors and at 0.8 m-1 m range).

4.3 Measured and Processed Image

The 30,000 pixel broadband image in Fig. 4.4 show a person with concealed weapons

under clothing. The brightest region in the image represents the known hot object

used for calibration which was a styrofoam cup with calibrated water temperature. The

knowledge of the highest (hot object) and lowest temperature (room) in the image are

used to fit the pixel values from the raw relative power data to a radiometric tempera-

ture image. Several weapons, namely a ZrO2 knife, a metal gun, and a millimeter wave

absorber, were concealed under different fabrics. The fabric were chosen to be the most

common clothing fabrics: cotton, polyester, wind-blocker jacket and thermal sweater.

The temperature resolution of the imager is 105mK. The measured temperature con-

trasts ranged from 0.5-1 K for wrinkles in clothing to 5K for a zipper and 8K for the

concealed weapon. Figure 4.4 shows the calibrated images after noise removal with a
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Wiener filter. The SNR increases from 19 dB for the measured relative power raw data

shown in Fig. 4.3 to 24 dB after filtering the image in Fig. 4.4.
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Figure 4.3: Unprocessed calibrated images. Concealed ZrO2 knife and metal gun. Gray
scale represents radiometric temperature in degrees Kelvin. A 25 pixel hot-object is
used for calibration above 330 K. All images are courtesy of Dr. Erich Grossman, Op-
toelectronics Division-NIST, Boulder, CO.

After filtering the noise, the data is subjected to the clustering algorithm. The

degree of similarity among pixels is computed by the Mahalanobis distance for all pairs

of pixels. After the image is divided into the desired number of clusters, a second stage

of adding spatial information is applied. Nearest neighbor information is included and

a final map with cluster labels is produced. For the purposes of comparison, Fig. 4.5

shows the segmentation results using only traditional C-means with Euclidean distance

and without addition of spatial pixel neighborhood information. In the following set

of figures, each of the images are displayed by cluster label. The colors from the scale

represent a cluster number, each pixel of the same color is assigned to the same group.

This means, for example, that if a pixel is assigned to cluster 2 in Fig. 4.5(a) with the

ZrO2 knife, then all similar pixels based on the Euclidean distance measure are assigned

to cluster 2. Note that the human body has been segmented into three different clusters
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(a) Concealed ZrO2 knife and metal gun
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(b) Concealed millimeter wave anechoic foam and metal gun

Figure 4.4: Calibrated and filtered images. Gray scale represents radiometric tempera-
ture in degrees Kelvin. A 25 pixel hot-object is used for calibration above 330 K. The
Wiener filter removes instrumentation noise.

and that the ZrO2 knife cannot be identified easily by observing the segmented image by

C-means only. However, note that in the Mahalanobis clustered image in Fig. 4.6 more

regions on the human subject are assigned to the same cluster. It can also be observed
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that the shape of the ZrO2 knife is better reconstructed and can be visually identified

by the user. Another important note is that the gun has been identified in Fig. 4.6 as

pertaining to a different cluster than the human subject and the edge of the body. This

discrimination cannot be observed in the images clustered by C-means only. This implies

that the addition of variance information from the Mahalanobis distance computation

provides the algorithm with more discriminating capabilities when compared to the

results of Euclidean distance alone.

4.4 C-means Clustering

Finally, the images were analyzed using an automatic pattern recognition technique

known as C-means clustering algorithm. In statistical pattern recognition, the anal-

ysis performed on the data can be roughly separated into unsupervised classification

(clustering) and supervised classification techniques. Currently, there are also a number

of semi-supervised algorithms available, which combine unsupervised and supervised

mechanisms that sometimes result in higher accuracy rates than unsupervised algo-

rithms alone (e.g., [12, 56,57]).

Unsupervised methods are those which do not require prior knowledge of the fea-

tures in the data, and/or have a priori information of the labels and number of classes

of the dataset. On the other hand, supervised classification techniques require prior

knowledge of features and its dependent on a set of training samples. In a general

sense, supervised algorithms tend to result in higher accuracy than unsupervised algo-

rithms but their dependence on a priori information limits their performance when the

data to be analyzed has unknown features. Also, supervised algorithms depend on the

selection of the training set of samples; if they are chosen incorrectly, its statistics will

not describe the data to be analyzed.

The idea of the C-means algorithm is to cluster data points (pixels) with respect

to the nearest distance to clusters centers µ̂i where i corresponds to a class label. The
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cluster centers are given by

µ̂i =
∑n

k=1 P̂ (ωi|xk, θ̂)xk∑n
k=1 P̂ (ωi|xk, θ̂)

(4.3)

where µ̂i is a the maximum likelihood estimate of the mean and P̂ (ωi|xk, θ̂) is the

conditional probability density function of sample xk belonging to class ωi.

P̂ (ωi) =
1
n

n∑

k=1

P̂ (ωi|xk, θ̂). (4.4)

Hence, the C-means algorithm can be described by an approximation of P̂ (ωi|xk, θ̂) to

P̂ (ωi|xk, θ̂) '





1, if i = m

0, otherwise
(4.5)

and calculating the Euclidean distance, ||xk − µ̂k|| of each point xk in the image with

respect to µ̂i. The C-means algorithm is given by [58] as follows:

• begin initialize n,c, µ1,µ2,...,µc

↪→ classify n samples according to nearest µi

↪→ recompute µi

↪→ until no change in µi

↪→ return µ1,µ2,...,µc

• end

4.4.1 Results of C-means clustering

The following figures show the result of a 5-means clustering application to calibrated

millimeter wave images. Each of the colors in the image represent a class label; pixels

having the same color represent pixels assigned to the same group (cluster) on the image.

For the addition of spatial information, the 2×2 neighborhoods are calculated and

samples that are spatially close are assigned the same cluster number after comparing

with the segmentation results using only the Mahalanobis distance. The pixels are re-

clustered with the information provided by the 4-NN spatial information. The resulting

images with the effects of adding spatially nearest neighborhood information is shown
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(b) Concealed millimeter wave anechoic foam and gun

Figure 4.5: C-means clustering of passive millimeter wave image from an individual
at approximately 1 m standoff distance concealing a gun, a ZrO2 knife. The water
temperature is 69.4◦C. Each color represents a cluster containing a set of objects with
similar temperatures around a mean. The segmentation is based on the Euclidean
Distance criteria.

in Fig. 4.7. The additional improvement in these images when using spatial information

is minimal and probably not worth the extra computational time.
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Figure 4.6: Application of Mahalanobis Clustering Algorithm to a passive millimeter
wave image from an individual at approximately 1m standoff distance concealing a
gun, a ZrO2 knife. Each color represents a cluster containing a set of objects with
similar temperatures around a mean and variance. The segmentation is based on the
Mahalanobis Distance criteria.

This section showed the results of segmentation of passive terahertz broadband im-

ages by using unsupervised classification mechanisms. The results of the clustering
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Figure 4.7: Post processing addition of spatial information using 4-nearest neighbors to
segmented image results using Mahalanobis distance criteria

algorithms based on the computation of the Mahalanobis distance were compared to

traditional techniques such as C-means clustering using only Euclidean distance. Once

the images were clustered, spatial information was added to the results. The segmented
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images show that the concealed weapons were visually identifiable for the images clus-

tered by the Mahalanobis distance method. In figures 4.3 through 4.7, the images were

pre-processed by simple noise filtering. The noise filtering was accomplished by using a

two dimensional Wiener filter that removed white Gaussian noise from the data caused

by instrumentation.

4.4.2 Extracting small temperature features

Commonly known techniques such as Canny edge detection, high-pass filters, and his-

togram equalization can also be used to improve image processing results. The algo-

rithms presented on this section represent only a small subset of others more complex

and robust algorithms that have been developed for image analysis and pattern recog-

nition. The algorithms used here were meant to be used as exploratory techniques for

the analysis of millimeter wave images.

Spatial Filters

Different types of pre-processing techniques can be used to reveal other features con-

tained in the measured images but not visible in figures 4.3-4.7. For example, a texture

filter based on the analysis of spatial standard deviation can be used [13]. Fig. 4.8 shows

the result of processing the image with a 3×3 neighborhood standard deviation filter.

The standard deviation of each 3×3 neighborhood was calculated and a new image

was generated containing the resulting value for σ at each neighborhood. The use of

this filter allows very small temperature differences across the image to become visually

obvious.

Edge Detection

For edge detection in image processing, an edge is considered as a discontinuity of gray

levels found amongst pixels. The edges are found by computing first and in some cases,

second order derivatives of the image. Thus, for an image I(x, y), with pixel index

positions (x, y), an edge is found by,
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Figure 4.8: Processing of radiometrically calibrated image using a texture analysis filter.
The 3x3 spatial neighborhood standard deviation is used to reveal small temperature
differences across the image allowing them to become visually obvious.

∇I =




Gx

Gy


 =




∂I
∂x

∂I
∂y


 (4.6)
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The direction of the edge is given by α(x, y) = tan−1
(

Gy

Gx

)
. The edge detection results

shown in Fig. 4.4.2 were obtained using a Canny edge detector. In general terms, the

detector is divided into two stages: 1) smoothing of the image (Gaussian filter), 2)

computation of its gradient (edges).

The gradient for the edge detection is found using Eqn.(4.6) and the smoothing filter

is given by,

H(u, v) = exp(D2(u,v)/2σ2) (4.7)

where D(u, v) =
√

(u−M/2)2 + (v −N/2)2 is the distance from any point (u, v) in the

image ∈ R[M×N ] to the center of its Fourier transform [13]. By using edge detection

and smoothing, an output image is created where the white noise has been removed and

edge features will indicate spatial regions with changes in temperatures from the original

scene. The following figures in 4.4.2and 4.4.2 are the results of applying Canny edge

detection and smoothing to various millimeter waves images. The matrix dimensions of

the images are (M=109, N=122) pixels.

Histogram Equalization

For a given digital image I(x, y), its histogram can be described by the probability

distribution of the gray levels in I(x, y) from an interval [0, L − 1], where L is the

maximum gray level of a pixel (i.e. 255 for uint8 images). Its histogram can be defined

with a discrete function h(rk) = nk where rk is the kth gray level, and nk is the pixel

number corresponding to gray level rk [13]. The function h(rk) can be normalized to

become,

p(rk) =
h(rk)

n
(4.8)

where n is the total number of pixels in the image.

Histogram equalization attempts to create a discrete function h(rk) to distribute the

gray levels of all pixels in an image across a uniform probability density function. The

transformation to map the pixels from the original gray level distribution to a uniform
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Figure 4.9: Edge detection using Canny filter of a passive millimeter wave image from an
individual at approximately 1m standoff distance concealing a gun, a ZrO2 knife. The
water temperature is 67.8◦C; (a) original calibrated raw image, (b) results of processing
the raw image with a Canny edge detector.
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Figure 4.10: Edge detection using Canny filter of a passive millimeter wave image from
an individual at approximately 1 m standoff distance concealing a gun, a ZrO2 knife. The
water temperature is 69.4◦C; (a) original calibrated raw image, (b) results of processing
the raw image with a Canny edge detector.
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distribution is achieved by,

s = T (r) =
∫ r

0
pr(ω)dω, (4.9)

where ω is a dummy integration variable and r is a random variable in the interval [0, 1]

that can also describe the gray levels in the image. Using this transformation allows

for higher contrast in the image, since the pixel intensities are now distributed across

all the gray levels spectrum. An example of histogram equalization and its effects on

image quality is shown in Fig. 4.4.2.
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Figure 4.11: Resulting image from applying histogram equalization to calibrated image.
Subject is at approximately 1 m a ZrO2 knife.

In conclusion, this chapter discusses image processing algorithms applied to the im-

ages from the single pixel millimeter wave imager described in Chapter 3. Pixel blurring

due to non-ideal Gaussicity, white noise caused by instrumentation, prior knowledge of

the controlled indoor image scene, were some of the parameters used to develop the

appropriate image processing algorithms. The system has an excellent temperature res-

olution of 105 mK but nevertheless additional processing using spatial filters revealed

features not visible in the raw images. An interesting result in the processed images

was that by detecting small temperature changes, small spatial features were revealed
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in the images, with the best example being folds in the clothing. It was shown that

simple image processing techniques are useful for fast visual concealed weapon detec-

tion and exploratory analysis for the case of broadband passive millimeter wave images

with low signal-to-noise ratio and low pixel count. In the case of the C-means algo-

rithm real-time performance was not achieved due to the nature of the distance metric

calculations. However, lower order statistics and/or a lower number of clusters can be

computed to improve performance speed. The algorithm can also be implemented on a

DSP chip due to its relative simplicity.
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Chapter 5

Image processing for a linear

array passive millimeter wave

imager

The previous chapter showed a set of passive millimeter wave images acquired by a

single detector. Although the quality of the images allowed for visual identification

of the concealed weapons, the integration time was 30ms/sample. At this integration

rate, a scan of a subject in an area of approximately 1 m ×1m will take 15-20 minutes,

requiring that the subject does not move during this interval to eliminate artifacts in

the image. If the subject moves slightly, it will show in the image as horizontally shifted

pixels. It is obvious how this requirement can become a problem if used at an airport

security portal for screening passengers. Hence, decreasing the scan and processing time

is essential for this type of security application, and also moving a step closer to the

goal of real-time operation.

One way to decrease scanning time is to use more than one detector. An N -element

detector array allows faster scanning, since it reduces the number of detectors by a

factor of N , in the case of a row-based raster scanning. However, adding more detectors

can also add artifacts to the image. These can be observed as streaks, usually caused
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by differences between the responses of the N detectors. These non-uniformities are

due to variation in DC bias offsets, bias drifts, poor electrical connections, noise in

specific channels or fabrication differences. Hence, in order to produce a visually higher

quality image, these streaks need to be removed without sacrificing resolution. This

chapter shows raw and processed images sampled using a row based raster scan with

a 1×8 linear array. The results of removing non-uniformities using image contrast

enhancement, spatial filtering and thresholding are presented.

5.1 Linear array passive millimeter wave images

This section introduces passive millimeter-wave images measured with a multiple linear

column detector array, by mechanical row-based raster scanning at a standoff distance

of 2 m. The setup and the receivers are similar to those shown in Chapter 4. The

linear array consists of 8 spiral antennas identical to the ones described in Chapter 3.

Fig. 5.1 shows the 1×8 linear detector array with center-to-center spacing of 4 mm used

to acquire the images shown this chapter. Each Si lens is 2mm in diameter. The array

and millimeter wave imaging system were designed by Drs. Erich Grossman and Charles

Dietlein at the Optoelectronics Group, National Institute of Standards and Technology.

All images presented in this chapter are courtesy of NIST.

3 cm

Figure 5.1: Photograph of a 1×8 linear array of detectors. Each lens is 2 mm in diameter
and has a spiral antenna coupled micro bolometer on the back. (Photo courtesy of
Dr. Charles Dietlein)
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The image acquisition using the linear array varies from that of the single pixel; in

this system each of the detectors in the linear array is scanning a row of the scene. The

magnification of the quasi-optical system design is approximately 10, hence the spacing

of the pixels on the image plane is around 35 to 40 mm. Each detector simultaneously

measures a row of the scene, across the horizontal direction, and when 8 rows are

completed the next 8 rows are scanned with the last row overlapping in some cases.

The acquisition time for the same area is thus reduced by a factor of eight. Each

detector is connected and biased independently but non-uniformities can occur due to

physical variations during fabrication, poor electrical connections, bias offsets, or noise

in the readout system. A block diagram in Fig. 5.2 shows a description of the image

acquisition of the raster-scanned linear array system. Incoming black-body radiation

is received by the antennas and coupled to the bolometer, which are noise matched to

the readout FET amplifier [59]. The signal is then sent to a data acquisition card and

recorded in a personal computer for processing and display.

Fig. 5.3 shows the artifacts introduced into the image caused by noise in the de-

tectors and differences in responsivities. Notice in the figure the dark stripes caused

by one of the eight channels having a degraded electrical connection. Fig. 5.3(b) is the

case when noise is present in one of the eight channels. In order to remove these and

similar effects which lead to differences in the received signal from the array elements,

a thresholding mechanism can be applied to the scan lines (rows). The threshold will

depend on the image global mean and standard deviation along scan lines. An example

of streak removal for a linear array of detectors process is described in [60] where it is

experimentally shown that the global intensity average of the image is not dramatically

different from the mean intensity on each detector. Based on the same assumption, a

threshold can be applied in the case described here by computing the average of all

scan line samples and creating a global mean, µ̂, and standard deviation, σ̂ dependent

on horizontal position on the scan. For the case of noisy channels, all those exceeding

the threshold given by:

τ = µ̂rows + 2.5 σ̂rows, (5.1)
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Figure 5.2: Block diagram describing the image acquisition process using an 8-element
array row based scanning system. Incoming black-body radiation is received by the
antenna inducing a temperature change on the bolometer, measured by a change in
resistance. The bolometers are noise matched to the readout amplifiers and subsequent
electronics.

will be removed or replaced by the average of the two neighboring scan lines. After

computing the mean and standard deviations as a function of the sample position in

the horizontal scan direction, the threshold is determined. In this case, the goal is to

remove the signals coming from the abnormal detector measurement that exceed 5.1.
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Figure 5.3: Images acquired by linear array of spiral ACMB using row-based raster
scanning. Notice that the minimum values displayed on each image are different for
ease in visualization. Each image is normalized to its own global maximum. Each pixel
in the raw image covers an area of around 3 cm2. (a) Subject concealing metallic gun
at standoff distance of 2 m. The dark scan lines in the images are indicative of a non-
functional detector due to bad electrical contact. (b) Subject concealing a metallic gun
under a leather belt. Detector number 8 shows higher noise levels than other detectors
in the array.
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Figure 5.4: Intensity of measured pixels along each row plotted for seven rows. A row
corresponds to a measurement from a detector in the 1x8 array. (a) measurement for
the case when one detector (d1) is non-functional and (b) measurement for the case
when one detector (d1) is noisy. The global average for all scan lines is plotted for
comparison. The streak removal technique identifies the row with values exceeding a
threshold, τ = µ̂rows + 2.5 σ̂rows, and replaces the scan line values by the average of the
two neighboring channels.
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In some cases, there will be a channel that is completely non-functional. In this case,

the detector will not measure a signal on a scan line, thus been expressed as a completely

black row (empirically identified as regions of constant intensities) on the image. A

similar thresholding method is used to remove the rows corresponding to non-functional

detectors. The threshold algorithm identifies channel with a constant derivative along

the horizontal scan direction in the image and removes from the measured data. Similar

to the case of channels with excessive noise, the values in the image coming from non-

functional channels are replaced with the average of the two neighboring scan lines. The

thresholding algorithm used to remove the noisy and non-functional detector stripes is

based on removing abnormal signals as those depicted for example in Fig. 5.4.

The images in Fig. 5.5 are of a subject concealing a resolution target under a sweater.

A resolution target is a test pattern object used to resolve the power of an imaging sys-

tems. It usually has a group of bars with different widths. In general, the resolution

limits of an imaging system can be determined by the widest bar that cannot be dis-

criminated [61]. An optical image of the resolution target used as a concealed object is

presented in Fig. 5.6. The bars of the resolution target are made of copper tape with

sizes ranging from 10 mm up to 20mm.
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Figure 5.5: Examples of images acquired by an 8-element linear array of spiral antenna-
coupled micro-bolometers using row-based raster scanning. Notice that the minimum
values displayed on each image is different for ease in visualization. Each image is
normalized to its own global maximum. Each pixel in the raw image(a) covers an area
of around 3 cm2 (a) Raw and unprocessed image of subject concealing a test pattern
(resolution target) under a sweater at a standoff distance of 2 m. The dark scan lines in
the images are indicative of non-functional pixels due to poor electrical contact on the
eighth detector. (b) Upsampled image at 10x and using automatic streak removal with
contrast enhancement. 63



Figure 5.6: Resolution target used as concealed object in linear array images. The bars
are made of copper tape and vary in size from 10 mm up to 20 mm.

Using interpolation and up-sampling can sometimes add artifacts to the image. How-

ever, in the cases studied here, it was observed that interpolation did not change signif-

icantly the real pixel intensities and also improved the visual quality and discrimination

of the concealed objects in the image. The signal-to-noise ratio was also improved. On

the original raw image shown in Fig. 5.5(a) the SNR = 5.25 while after processing is

improved to SNR = 6.2 in Fig. 5.5(b). This improvement on the small spatial features

of the image can also be observed in Fig. 5.7. This figure shows a one-dimensional cut

(profile) across the horizontal scan direction of the image (a scan line by one detector).

The solid line shows the interpolated cut and the red points indicate the original values

taken from the raw image. In Fig.5.5 the subject is concealing a resolution target which

is visually identifiable after applying the automatic streak removal and the interpolation

algorithm.

A post-processing step in the spatial domain is performed after the automatic stripe

removal to enhance the image contrast using adaptive histogram equalization. A gray

scale transformation, T [f(x, y)], is applied to the image without the stripes. The trans-

formation T can be chosen from several mapping functions to either stretch or compress
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Figure 5.7: (a) One-dimensional cut across horizontal scan direction of the image, b)
zoomed in region of the cut, (c) plot of the normalized pixel intensity along the cut.
The solid line shows the interpolated and processed pixels, the red points indicate the
original values from the raw image. The features on the clothing, such as folding, as
well as the concealed resolution target are enhanced using interpolation, revealing the
dips between peaks of intensity. These dips in turn bring out features that cannot be
seen in the raw image.

the dynamic range of the data. The gray scale transformation weighs the input pixel

values depending whether the output values are desired to enhance higher (brighter)

pixels or lower (darker) samples. The weighting of the transformation is achieved by
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modifying the T as shown in Fig.5.8. For values of g < 1 the pixels are weighted towards

brighter output values, for g > 1 the weighting favors darker outputs, and g = 1 is a

linear mapping from input pixels to output pixels.

lowest value

input pixel

highest value

input pixel

(1%) lowest value

output pixel

(99%) highest value

output pixel

g=1

g<1

g>1

Figure 5.8: Various intensity transformation functions to map intensity values in gray
scale image. The processed pixel intensities are such that 1% of the pixels are saturated
at low and high intensities of the raw data. This increases the contrast of the output
image. Varying the values of g changes whether the brighter or darker input values are
weighted higher than others. In the case of g < 1 the mapping is weighted towards
brighter values, for g > 1 the darker values are weighted, g = 1 is a simple linear
mapping from input to output.

The histogram adjustment used as post processing for the images shown in Fig. 5.5

saturates the 1% darkest and brightest regions in the image and stretches the remaining

99% of the values to fill the dynamic range of a gray-scale image of values (0, 255) [13]. In

addition to the contrast enhancement, the background is further processed and removed

from the scene, thus enhancing the features on the foreground of the image. Additional

examples of processing the passive millimeter wave images using these techniques are

shown in Figs. 5.9 and 5.10. For the case in Fig. 5.9, the SNR on the raw image (a) was

4.10. After automatically removing the stripes and thresholding the signals from the

noisy detectors, interpolation and contrast enhancement were applied (b). This resulted

in an improved signal-to-noise ratio of 5.14 and a higher visual quality, facilitating the

visual identification of the concealed gun under the belt. For the images presented in

Fig. 5.10 the processing produced an SNR of 6.01, compared to 5.9 from the raw image.
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Figure 5.9: Examples of raw (a) and processed (b) images acquired by an 8-element
linear array using row-based raster scanning. The noise lines in (a) are due to a single
noisy channel. The subject is concealing a metallic gun at standoff distance of approx-
imately 2m under jeans and leather belt. After the processing the following features,
visually undetectable in the raw image become obvious: zipper, collar, folds on the
clothing, hand in pocket, low leather belt, and another artifact behind the belt, because
of the low resolution it is not obvious that this artifact is a weapon.
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Figure 5.10: Examples of a good raw image (b) and processed images which increased
the SNR. The subject was concealing metallic gun at standoff distance of approximately
2m. The dark scan lines in the images are indicative of a non-functional pixel caused by
poor electrical contact on the eight detector. The processed image using streak removal,
interpolation, and contrast enhancement.
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5.2 Conical Scan

The previous section showed images that were acquired by row raster scanning using an

8-element linear array of antenna coupled microbolometers. In order to cover a larger

field of view (FOV) in real time (30 frames/sec), a longer linear array with a conical

race-track scanning mechanism was implemented at NIST. The design of the conical

scanner is based on a Schmidt telescope architecture [62]. This design covers a larger

FOV area of 4 m x 2 m with optics designed to reduce aberrations. The detectors for

this system are set up as a linear 1 x 64 array where each consists of an antenna coupled

microbolometer coupled to a Si lens.

In this chapter the sampling grid, detector efficiencies, and geometrical spot size were

obtained from an optical simulation software called ASAP (Brault Research Organiza-

tion) and the imaging system designed by Dr. Erich Grossman at NIST-Boulder. The

sampling grid (pseudo-target plane) covered by the conical scanner is shown in Fig. 5.11

were the non-uniform sampling is seen on the pseudo-target plane. Here (x’,y’,z’) denote

coordinates on the image plane. These are not the same as the (x,y,z) coordinates due

to a tilt in the imaging system but the transformation to (x’,y’,z’) is straightforward.

The simulated optics and conical scanner show the predicted image characteristics of the

initial version of the imaging system using 64 detectors sampling 256 positions. Each

sample is taken every 1.4 degrees.

The results of the ASAP simulation give the distribution of efficiencies across the

field of view. There are approximately 16,000 points sampled by 64 detectors at 256

angle positions. For each of these positions in (x,y,z) there is an estimated detector

efficiency and geometric spotsize. The efficiency takes into account losses due to ob-

structions introduced to minimize aberration, as well as diffraction and absorption which

are small. The efficiency distribution across the field of view is shown in Fig. 5.12(a). In

Fig. 5.12(b), a histogram of the 16,000 simulated sample points shows that the overall

average efficiency is approximately 29%. This is mainly determined by the efficiency of

the conical scanner ( 55%) and that of the Schmidt optics ( 63%) [7].
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Figure 5.11: Field of view of 2 m by 4m target plane covered by the race-track sampling
mechanism. Each of the 16,000 blue dots represent a position on (x’,y’,z’) where a signal
is to be recorded (center of pixel position). The system is simulated using ASAP for
a 64-element linear array in a Schmidt telescope design. (a) Top view of the target
plane showing the 4 m xm FOV coverage, (b) Side view of FOV coverage showing the
sampling positions at a range of 6 m to 7 m.

For the geometric spotsize, the flat reflector was used to reduce spherical aberra-
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Figure 5.12: Field of view of the conical scanning imaging system using 64 detectors at
256 scan angles. (a) Distribution of efficiencies on the target plane, (b) Histogram of
the overall optical efficiencies for the 16,000 samples in the image.

tions of the imaging system; and a comprehensive discussion related to the pixel size

vs. frequency for the specific optics design is given in [7]. The geometric spotsize is
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determined by the specific frequency between 0.2-1.4 THz. In this case, for frequencies

greater than 750 GHz and a nominal 8 m range are the contributors for the estimates in

Fig. 5.13 of approximately 5mm. The average value for the spotsize in the histogram

of Fig. 5.13(b) is closer to the diffraction-limited spotsize of 6 mm, when using a flat

reflector.

The goal of the synthetic image experiments presented in this section is to evaluate

whether the interpolation and the filtering can be used to dynamically calibrate the

conical scanning system in real time once the system is functional. The algorithm

should correct for the non-uniformities by compensating for the estimated variations.

This is done by dynamically creating a flat field (white scene) that is used to remove the

detector variations. An example of how the interpolation algorithm is used to generate

a full flat-field scene where the non-uniformities are removed is shown in Figs. 5.14 and

5.15 for two cases: all equal detectors Figs. 5.14 and Fig. 5.15 detectors with a Gaussian

distributed responsivities.

The real practicality and performance of the algorithm will be assessed when real

conical scanned images are obtained from the imaging system currently under devel-

opment at NIST. However, based on the performance of the synthetically generated

checkerboard scenes, it is expected that two-dimensional spatial interpolation of the

samples (i,j) and contrast enhancement will be able to reconstruct the physical sam-

pled scene in (x,y) with high visual quality already demonstrated for the 8-element row

scanned array.
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Figure 5.13: (a) Geometric spotsize distribution in the target plane the imaging system
using a Schmidt telescope design using a flat reflector. (b) Histogram of the average
geometric spotsize for this design, approximately 4.2 mm.
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(a)

(b)

Figure 5.14: (a)Upsampled image from original scene corrupted with uniformly dis-
tributed variations in the detector array, and (b) reconstructed purely white synthetic
scene. In this case, uniform detector variabilities were assumed and a Gaussian two-
dimensional interpolation was used with window of length L = 128 and width of σ = 5.
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Figure 5.15: (a) Upsampled image from original scene corrupted with Gaussian non-
uniformities in the detector array, and (b) reconstructed purely white synthetic scene.
In this case, Gaussian distributed detector ≈ G(0, 0.1) variabilities were assumed and a
Gaussian two-dimensional interpolation was used with window of length L = 128 and
width of σ = 5.
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The next step is to test the performance of the algorithm which can be used to flat

field the images on a physical scene of 4 mx 2 m. The flat fielding of the image consists

on equalizing the detector gains. If two detectors pass through the same scene point

(x,y), the received signal should be equal on both detectors. If the measurements are

different, an optimization algorithm based on minimizing the difference between the

measured values at detector i and detector j. The (x,y,z) positions determined by the

simulation are used as coordinates in a new space (x’,y’,z’). The 3-D space of the optical

simulation is projected into a 2-D space by using a perspective projection mapping onto

an image plane. In the image plane a point in (x’,y’,z’) becomes an index position

(i,j) in a synthetic optical image covering a physical space of 4 m x 2 m. A standard

checkerboard algorithm calibration image is used for the purpose of evaluating the

sampling of the conical scanning system on the FOV. Fig. 5.16 show the checkerboard

pattern image of dimensions 4000× 2000 pixels, where each pixel represents a millimeter

on the grid shown in Fig.5.11. The squares are either completely black or completely

white.
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Figure 5.16: Standard checkerboard calibration image used for the purpose of evaluat-
ing the sampling of the conical scanning system on the FOV. The pattern image has
dimensions 4000× 2000 pixels.
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Once the synthetic image is sampled, the goal is to now reconstruct the original full

scene given that only 16,000 pixels were obtained. The pixels sampled at index positions

(i,j) along projected image (x’,y’) are shown in Fig. 5.17. By using several image and

signal processing techniques such as two-dimensional interpolation and filtering, the

synthetic checkerboard pattern can be reconstructed. The interpolation is based on

several variations of Gaussian and Chebyshev windows, changing length of the windows

measured in pixels and standard deviation (Gaussian). These parameters are chosen

accordingly for optimal visual quality and reconstruction of the scene. In this case the

Gaussian window given by hg(x′, y′) = exp− (x′ − y′)2/2σ2. The x’ and y’ are variables

for the pixel dimensions and σ is the standard deviation of the Gaussian window. For the

specific example shown in Fig. 5.18 the length of the window is L = 128. The window is

a high order (> 10) Chebyshev polynomial window with sidelobe attenuation of 60 dB.

Note how the squares are visually reconstructed, the image contrast is improved and

the streaking is eliminated. The contrast enhancement used is the same used for the

row-based linear array images. Notice that bright regions seen at the top and bottom

edges between (1500,3000) millimeters are completely white and are an artifact of the

sampling. Fig. 5.18 are now completely white. This is achieved by using histogram

equalization and stretching, as described in Sec. 5.1. By varying the window type,

length, and width parameter, the sampled image can be reconstructed accordingly.
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Figure 5.17: The pixels sampled at index position (i,j) are shown
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Figure 5.18: Image reconstructed from the 4000 mm x 2000 mm scene using two-
dimensional 10th order Chebyshev window of length L = 128 with sidelobe attenuation
of 60dB. Only 16,000 pixels were sampled from the original image. The black corners
are areas where the conical scanner did not sample. Additional post processing was per-
formed using contrast enhancement. The darker regions on the top and bottom of the
image are removed in this case when compared to the Gaussian window reconstruction.

In each of the previous images, the detector non-uniformities have not been men-

tioned. This is based on the assumption that each of the detectors will have an uniform
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response and that each will have the exact same behavior across the FOV. Based on the

knowledge of the row-based linear array system, it is safe to say that this assumption

is not realistic. Hence, an experiment assuming non-uniform behavior on the detectors

was performed. In this case, the detectors are assumed to have an extreme binomial dis-

tribution behavior. This implies that some detectors will be completely non-functional

while others will detect 100% of the received signal. Fig.5.19 depicts the scenario where

50% of the detectors are non-functional. On Fig.5.20 it is seen how the reconstruction

algorithm is able to recover parts of the checkerboard pattern but some of the streaks

remain on the scene. However, the areas that were originally sampled by the functional

detectors are able to be reconstructed removing the induced conical streaks by filtering

and spatial interpolation.
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Figure 5.19: A sampled scene with detector response given as a binomial distribution.
Every other detector is non-functional, implying that some detectors will not detect a
signal while others will detect 100% of the received signal.

In summary, this chapter presented results of image processing applied to images

from a linear array of millimeter wave antenna coupled detectors. It was demonstrated

for row-scanning that the SNR improved as much 18% when images where processing
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Figure 5.20: Reconstructed image using the extreme case of detectors following a bino-
mial distribution, having 50% of the array completely non-functional

using streak removal, 2-dimensional interpolation, filtering and contrast enhancement.

A major non-ideality in the imaging system is the extreme non-uniformity of the indi-

vidual elements of the array, and this was taken care in the processing by thresholding

resulting higher visual quality images. It was also shown that the processing allows for

feature extraction and identification not possible in the raw images. The thresholding

algorithm speed is sub-second, while the interpolation takes up to a minute and can

be improved with specialized DSP. An extension to these algorithms was applied to

synthetic images for a 64-element conically scanned array, taking into account efficiency

of the quasi-optical system, non-uniform sampling, and geometric spotsize.
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Chapter 6

Non-destructive Si chip

inspection using a scanned

microwave probe

Non-destructive inspection of material properties and material characterization is of

particular interest to complex materials measurements and integrated circuit inspection

[2, 63]. Near-field probing has been used in the past few decades for material property

measurements [3, 64, 65]. In this technique, a small probe is a part of a microwave

resonant circuit and by capacitively loading the probe with an unknown material in the

near-field, the change in resonant frequency and Q-factor can be measured. The local

properties of the unknown material can be de-embedded from the measured resonance

change. This type of a system can be applied to sub-surface detection of Si CMOS chip

metallization by virtue of the fact that the skin-effect at lower microwave frequencies is

large compared to the top layers of a CMOS chip [66].

A prototype system was implemented at the University of Colorado by Jonathan

D. Chisum, and this chapter presents the image processing applied to 2-dimensional

measurements of portions of two CMOS chips by this non-destructive inspection probing

system. In the near-field system discussed here, the tip-size varies from 1µm-15µm with
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comparable distance to the sample. The central frequency of the resonance is several

hundreds megahertz to 2GHz. In the scans presented here, the 900 MHz circuit was

operated at its second resonance at 1.8 GHz, while the pixel size is on the order of

10µm giving a spatial resolution around λ/10, 000. Fig.6.1 shows a block diagram of

the instrumentation with a photograph of a 15µm tungsten tip above a sample. The

probe circuit with the sharp field concentrating tip is mounted above the sample, which

sits horizontally on a stack of Physik Instrumente (PI) M-11X series micro-translation

stages. The micro-translation stages provide coarse xyz motion control while a PI P-

611.ZS piezoelectric stage provides fine-z control. The two ports of the probe circuit

are connected through low-loss, phase-stable cables to an Agilent E8364B Precision

Network Analyzer (PNA). The coarse xyz motion stages are controlled through a PI C-

843 motor driver controller card. The fine-z piezoelectric motion stage is controlled via

a bias voltage from a function generator and a low noise amplifier. A computer triggers

and records the four complex S-parameters measured by the PNA. The Agilent N9445A

passive acoustic vibration isolation chamber acts as a mechanical low-pass filter with a

cutoff of approximately 2Hz. This system records an S-parameter matrix which is used

to extract the resonant frequency and Q-factor of the measurements using standard

methods [67].

The PNA provides complex S-parameter data for many frequency points around the

resonance. Since the Q-factor of the near scanning resonant circuit is on the order of

1000 and the capacitive loading of the probe is very small, for good measurements the

probe has to be placed as close to the sample as possible and the phase noise of the

system needs to be minimized. For example, for a 10µm probe the tip needs to be

maintained at 10µm above the substrate for a scan over a millimeter to centimeter.

This height control to about 1% of the probe size as well maintaining the zero of the

(x,y) coordinate system is a challenge as it introduces errors in the image. Additional

hardware limitations include probe tip size and its shape which determine signal strength

as well as shape of the pixel and spatial resolution. The quality of the stepper motors

determines the step size resolution and non-uniformity of spatial sampling. For the
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Figure 6.1: Block diagram of the motion stages, sample platform, and probing circuit
for near-field microwave probing. The system is fixed in an acoustic vibration-isolation
chamber and the PNA is connected to the probing circuit through phase stable, low-loss
cables [66]. The photograph on the left shows a 15µm Tungsten tip above a sample.
Photo courtesy of Jonathan D. Chisum.

current instrument, the processing algorithm is as follows:

(1) The scans are upsampled according to the scan step size to make a single pixel

equivalent to 1µm. The up-sampling enables higher position accuracy for the

image registration process.

(2) The two-dimensional data is registered using a cross-correlation method by select-

ing points from the upsampled image in known positions to correct for alignment

imperfections.

(3) The upsampled and registered images are interpolated using two dimensional fil-

ters and spatial operations such as weighted average of neighboring 4x4 pixel

regions. Sub-pixel features become visually identifiable after the interpolation is

performed.
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6.1 Processing for defect detection

Two test structures were scanned using this system and image processing was applied

to enhance sub-resolution features. The first test structure is a large CMOS chips

fabricated in a standard IBM process, consisting of four 400µm squares of dense circuitry

with eight metal layers. A backside image of the chip with scan area marked by the

squares is captured using a broadband infrared camera and shown in Fig.6.2. The two

square regions scanned are not identical on the inner metal layers. In addition, the

top two metal layers contain periodic metal polygons roughly 1µm and 6µm square,

used for planarization. These metal squares provide an extra shielding layer for the

demonstration of metallic depth penetration. Fig. 6.2 shows the difference between the

two circuits in Metal layer 4 clearly. The normalized Q-factor for the 2D scans obtained

with a 15µm diameter tip, 5µm above the sample surface.
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Figure 6.2: (a) A broadband incandescent IR source was used to illuminate the chip from
the back-side, and a broadband IR camera was used, with a lens, to record the image of
two 400µm square circuit regions of a large CMOS chip fabricated in a standard IBM
process. The square indicates the scan area and the difference between the two circuits
in Metal layer 4 are clearly visible (IR image courtesy of Prof. Dana Anderson, JILA),
(b) cross-section and dimensions of dense circuitry with eight metal layers in CMOS
chip.
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The two test structures shown in Fig. 6.2(a) were processed to characterize the re-

peatability of the measurements and the ability of discriminating between different

CMOS chips. The repeatability of the system was examined by calculating global statis-

tics resulting from the two 2D scans and samples at each point taken 5 times.

For the case of discrimination between chips, the same sampling followed by the

repeatability study was used , and the global statistics of the 2D scans were estimated.

The resulting global standard deviation of two scans taken from the same chip is pre-

sented in Fig. 6.3.

In addition, the values from the two 2D scans were compared by using image sub-

straction on a pixel-by-pixel basis. For simplicity, each test structure will be referred

to as Ck,n, where k = 1, 2 is the circuit number, and n = 1, 2 is the scan number. The

Q-factor 2D scans at 1.8GHz obtained with a 15µm diameter tip at 5µm above the

sample surface are shown in Fig. 6.4.

For processing and feature enhancement, each scan was normalized using its respec-

tive spatial-global maximum. The normalization factors are shown in Tables 6.1 and

6.2. The images are upsampled, registered and interpolated, following the processing

algorithm described in Sec. 6.
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(a)

(b)

Figure 6.3: Standard deviations estimates of two scans of same CMOS chip taking each
point at position (i,j) 5 times. The measurements used a 15µm diameter probe tip and
5µm above the sample surface. The probe footprint and pixel size is approximately
equal to 15µm.
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(a)

(b)

Figure 6.4: Q-factor from raw two-dimensional scans of CMOS circuits using a 15µm
diameter probe tip and 5µm above the sample surface. The probe footprint and pixel
size is approximately equal to 15µm.
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(a)

(b)

Figure 6.5: Upsampled and interpolated images of measured Q-factor two-dimensional
scans using a 15µm diameter probe tip and 5µm above the sample surface. The probe
footprint and pixel size is approximately equal to 15µm.
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Repeatability

The repeatability of the system was studied by performing a pixel-based image sub-

straction on pairs of 2D scans and identify local differences. A description of the pixel-

by-pixel image substraction algorithm is shown in Fig. 6.6. Notice that this technique,

assumes a perfect registration between the two samples being subtracted, making image

registration and alignment precision in the system an additional source of errors. In the

ideal case, for perfect registration, perfect alignment of chips on mount will have a value

equal to 0, a black pixel which represents both values are identical. A resulting value

of 1, a white pixel, indicates complete difference between the two points.

Figure 6.6: Absolute difference in images (2D data) can be obtained by subtracting the
data from each scan on a pixel by pixel basis. Xi,j and Yi,j are matrices of pixels in
positions (i,j) containing the measurements obtained from the probing system. In the
ideal case, for perfect registration, perfect alignment of chips on mount will have value
of 0, a black pixel, representing both values are identical. A value of 1, a white pixel,
representing complete difference between two points.

The results of the image substraction between C2,1 and C2,2 are presented in Fig. 6.7.

The abundance of dark values in the difference image indicates that the two scans are

similar and the measurements correspond to the same test structure. This observation

is validated by calculating the global statistics of the two scans of circuit 2. Table 6.1

shows that the varibiality of the measurements from one scan to the next is around 1%.

91



Figure 6.7: An example of image substraction between scans from C2,1 and C2,1. After
the 2D data was registered using cross-correlation, to account for alignment imperfec-
tions, a pixel-based image substraction was performed on pairs of 2D scans to identify
local differences. Pixel-based image substraction between C2,1 and C2,2 to detect differ-
ences on chips under several metallization layers.

Table 6.1: Global statistics of CMOS chips scanned using a 15µm tip. Two scans were
taken for each circuit. Shown here are the results of comparing Circuit 2, Scan 1 and 2
to study repeatability of the scanning system.

C2,1 C2,2

Normalization factor 650.48 650.50
Global average 644.72 644.53

Global standard deviation 1.91 1.87
Global minimum 650.48 650.50
Global maximum 642.18 642.44

Discrimination

To analyze the ability of the system to measure differences in chips, the same registration

and upsampling techniques were used. In this case, the image substraction indicates

areas of local change where C1,1 and C2,2 are different. The global statistics for the

scans of circuit 1 and 2 are shown in Table 6.2.

In summary, the probing system is able to measure consistently between same sam-

ples and discriminate different ones. However, it is with the help of image processing

that spatial information, and sub-feature enhnacement is achieved.
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Table 6.2: Global statistics of CMOS chips scanned using a 15µm tip. Two scans were
taken for each circuit. Shown here are the results of comparing Circuit 1 and 2 to
discriminate between them.

C1,1 C2,2

Normalization factor 648.05 650.48
Global average 643.81 644.72

Global standard deviation 1.22 1.91
Global minimum 648.05 650.48
Global maximum 642.34 642.18

Ideally, for applications where automatic defect detection is needed, the image sub-

straction algorithm in combination with thresholding can be applied. An example of a

threshold that will allow for automatic identification of defects between groups of chips

is shown in Fig. 6.10. In this figure, the blue and red lines correspond to the global

mean along rows of the two test structure scans, resulting in a cut along the columns.

The separation between these two lines are indicative of the difference on the chip that

was detected by the system.
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Figure 6.8: Average difference in normalized Q-factor plotted as a function of x, av-
eraged over all pixels in the y-direction. The dashed blue line indicates the difference
of normalized data between circuit 1 and 2. The solid red line shows the difference of
normalized data in two scans of circuit 1.
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A different CMOS chip with busses on the top metal layers was used as a third

test structure with the same probe circuit, but scanned at 20µm height. The bus

lines can be seen in the optical image shown in Fig. 6.9. The processed images from

the measured Q-factor and changes in resonant frequencies of the third test structures

allows for discrimination of features of approximately 10µm wide. Because of this scan

height, the effective probe footprint, and thus the resolution, is approximately 20µm.

The bus feature of approximately 10µm is visually identifiable in Fig. 6.9. The results

suggest that extraction of features below the typically accepted theoretical resolution of

20µm is possible. We are limited to the scan step size (7.5µm) as a possible resolution.
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195 mm

(a)

Figure 6.9: Optical image of CMOS chip with busses on the top metal layers. The bus
lines can be seen in the optical image

In conclusion, image processing using upsampling, registration by cross-correlation

and two dimensional spatial interpolation allowed for enhancement of the visual quality

of the scans and also sub-surface detection of small features in the data. The repeatabil-

ity and discrimination capabilities of the measurements by the systems were also studied,

and local spatial differences between chips were identified by using pixel-by-pixel image

subtraction.
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(a)

(b)

Figure 6.10: Average difference in normalized Q-factor plotted as a function of x, av-
eraged over all pixels in the y-direction. The dashed blue line indicates the difference
of normalized data between circuit 1 and 2. The solid red line shows the difference of
normalized data in two scans of circuit 1.
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Appendix A

Nonlinear Classification and

Epileptic Seizure Detection on

Acute Rat Model

A.1 Introduction

The scalp electroencephalogram (EEG) is a powerful tool for neurophysiology in 1929,

when Hans Berger first published his study on the electrical activity of the human

brain. Berger observed the presence of different frequency rhythms during wakefulness

and alertness, comparing them in normal and injured brains [68]. Since then, the EEG

has been commonly applied to the study epilepsy. Modern EEG systems can use up to

128 electrodes to sample and record the time domain electrical activity of the brain [1].

The signals from the electrodes are mixtures of neural signals of interest and thus,

some signal processing needs to be applied in order to separate them. Usually, the EEG

recordings are assumed to be a linear combination of the real signals implying that linear

separation methods such as Principal Component Analysis (PCA) can be applied. One

of the goals of this thesis is to explore whether nonlinear methods are better suited for

this type of analysis. Additional processing is needed to remove artifacts such as those

caused by muscle movements.
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Historically, the detection of epileptic seizures by clinicians has been based on the

visual inspection of the EEG recordings. Studies have shown that epileptic seizures

give rise to changes in certain frequencies bands of the Fourier Transform from the

measured signals [1]. For example [69, 70] focused on the analysis of the θ (3.5 - 7.5Hz)

and the α (7.5 - 12.5Hz) rhythms, and their relationship to epilepsy. Time-frequency

methods, such as the Gabor and wavelet transforms are used to detect the onset of

seizures. Subsequently, nonlinear dynamic techniques showed that a reduction in the

dimensionality of the data might indicate an epileptic seizure (ictal state) [71,72]. This

decrease in dimensionality may be due to synchronization between the neurons during

a seizure.

Currently, there are various techniques for reducing the dimensionality of data, such

as the widely known Principal Component Analysis (PCA) [56]. The linear subspace

created by this technique is obtained by finding the first eigen-components on the data

where the variance is maximized. Being a linear technique it is not able to separate op-

timally signals from nonlinear combinations. Further higher order statistical techniques

such as the Independent Component Analysis (ICA) assumes statistical independence of

each of the signal mixture components. The dimensionality reduction method presented

here is nonlinear and attempts to reconstruct the underlying structure of the dataset

without a priori statistical assumptions of the signal mixtures.

Several nonlinear techniques have been recently developed to deal with these lim-

itations and have focused on building lower dimensional representation of datasets by

taking into account the nonlinearities of the data under study. These techniques assume

that the samples can be described by a smooth manifold with an existing underlying

structure. The lower dimensional manifolds reconstructed by these techniques include

information on neighboring points. Examples of nonlinear approaches are Laplacian

Eigenmaps [10,73], and Local Linear Embedding [74,75].

In this work, the underlying structure of the EEG recordings to detect epileptic

seizures is examined. Consider a D dimensional vector X[n] consisting of the measured

output of the D electrodes as a function of time as shown in Fig.A.1. Since the number
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Figure A.1: Set of normal and epileptic EEG recordings. Each recorded signal corre-
sponds to the sampled measurements from one scalp electrode as a function of time,
(a) A set of EEG sampled measurements from a normal brain EEG as a function of
time. This figure shows an example of a brain on a baseline (normal) state, (b) A set
of EEG sampled measurements from an epileptic brain as a function of time. Each of
the measured signals correspond to an electrode placed on the scalp. This figure shows
an example of a brain on an ictal (seizure) state.

of electrodes is on the order of 64 to 128, classification in such a high dimensional space

requires a very large number of training samples [76]. Due to the physical processes
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in the brain, the D signals are not orthogonal and the intrinsic dimensionality of the

EEG recording is probably lower than D. In this work, it is assumed that the sampled

measurements X[n], n = 1, 2, ..., N lie on a smooth manifold of dimensionality d ¿ D.

Each point on this manifold represents a measurement of the D-dimensional vector X[n].

Reasonably, EEG recordings associated with seizure (ictal) and normal states (baseline)

are expected to lie in different regions of the manifold. The experiments presented here

validate this hypothesis. The goal of this work is to reconstruct the underlying manifold

and use it to train an algorithm using a kernel ridge classifier in order to detect epileptic

seizures with high probability of classification.

The following sections describe the approach, methodology and results of this work.

Section A.2 contains a general overview of the mechanisms used to perform the EEG

analysis and classification. Section A.2.1 describes the methodology for reconstructing

the EEG manifold and the classifier is discussed in the appendix. Some related tech-

niques are mentioned in A.3. The experiments and conclusions are presented in A.4 and

A.5, respectively.

A.2 General overview

The main problem addressed in this work is the classification of a EEG recording X[n] at

a given sample n into one of the two classes: (1) ictal or (2) baseline. The goal is to train

a classifier using time samples extracted from ictal, Xi = [Xi(1)|...|Xi(N)], and baseline

states Xb = [Xb(1)|...|Xb(N)]. In this work, the Laplacian eigenmap method is used [10]

to reconstruct the underlying manifold from the training samples Xb and Xi. Following

the reconstruction of the manifold, the samples are projected into a lower dimensional

subspace, with dimensionality d ¿ D. Therefore, better classification performance with

the same number of training samples is expected if classification is performed directly

on the reconstructed manifold [77].
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A.2.1 Reconstruction of the EEG manifold

Since we do not have access to a representation of the EEG manifold, we can use the

samples to approximate it. A good initial approximation to the unknown geometry of

the manifold can be achieved by building a graph. An example of an adjacency graph

is shown in Fig.A.2. In this figure, each of the nodes represent a D-dimensional vector

containing the sampled EEG at an instant in time. Each point is either connected or

not; depending on a computed adjacency matrix, An,m with weights Wn,m. Common

Figure A.2: Example of graph, G = (V, E). Each of the nodes, V , represent a D-
dimensional vector containing the sampled EEG at an instant in time. Therefore, each
node represent a set of samples at different times, n. Each point is either or not con-
nected by an edge, E, on a computed adjacency matrix, An,m with weights Wn,m. For
this case, Wn,m is obtained by computing the k-nearest neighbors. Once, these weight
values are computed, the graph, G is formed.

ways to compute these weight values and construct the graph is by selecting k-nearest

neighbors or by defining an ε-neighborhood [10]. The former was chosen for this work.

In this case, the vertices of the graph are sample points, X[n] formed by the columns

of X. The edges define the proximity of samples on the underlying manifold. We

connect vertices using the k-nearest neighbors approach: the nodes X[n] and X[m] are

connected by an edge if X[n] is among the k-nearest neighbors of X[m]. The edges

on the graph can also have assigned weights, Wn,m for neighboring points, creating a

weighted adjacency graph. These weights are given by

Wn,m = exp(−‖X[n]−X[m]‖/(2σ2)). (A.1)
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The classification algorithm is shown in Fig.A.3 and the steps are as follows:

(1) Consider baseline and ictal time series Xb,Xi of size (D × N), and construct the

concatenated matrix X = [Xb|Xi] matrix;

(2) Construct adjacency matrix, A, from X;

(3) An,m =





∑
l Wl,m if l = m

0 otherwise
;

(4) Weights

Wn,m = exp
(−‖X[n]−X[m]‖/2σ2

)
where X[n] and X[m] are columns n,m of

X;

(5) Vertices of the graph are columns X

(6) Edges are defined by k-nearest neighbors;

(7) Find the Laplacian matrix, L,

Ln,m = An,m −Wn,m

(8) Find the eigenvectors {φ1, ..., φd} of

Lφl = κlAφl ;

(9) Project the training data on the manifold using (B.5), finally;

(10) Train the kernel ridge classifier on the manifold

Once the connected graph is constructed, we compute the Laplacian, L, on the graph

defined as L = A−W , where the adjacency matrix,

An,m =





∑
l Wl,m if n = m

0 otherwise
.

The eigenvectors ∈ [φ1, ..., φD] are solutions to the following eigenvalue problem

Lφl = κlAφl, (A.2)
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Figure A.3: Block diagram of classification algorithm. The full set of measured EEG
signals are recorded from up to 128 electrodes as a function of time. The dimensionality
of these sampled measurements is reduced by method of Laplacian Eigenmaps. A lower
dimensional set of measurements, d ¿ D is used to train the algorithm. The distinc-
tion between normal or epileptic EEG measurements is performed by using a kernel
ridge classifier as a discriminant function. Computing the kernel matrix is the most
computationally demanding part of the algorithm.

where κl is the corresponding eigenvalue. As is explained in [10, 73], the eigenvectors,

φ1, ..., φD, provide the optimal embedding of the manifold. The mapping defined by

X → Φ(X) = [φ1|...|φD]T (X)

preserves the Euclidean distance locally by minimizing
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∑
n,m

||φn − φm||2Wn,m = tr(ΦTLΦ). (A.3)

The vector φ that minimizes (B.4) is provided by the lowest non-trivial eigenvalue

solution of the generalized eigen-problem in (B.3). The reduction of dimensionality is

achieved by defining the mapping from RD → Rd, where R is the set of real numbers,

as follows

X(l) → X̃(l) = column l of Φ̃(X) (A.4)

= [φ1|...|φd]T (X). (A.5)

The classification of the training data is performed by projecting Xb and Xi using

the mapping defined by (B.5). The projections X̃
b

and X̃
i

are used to train a kernel

ridge classifier. A new EEG recording X[n] can be classified by first projecting it on

the manifold and using the classifier to determine the status, ictal vs. baseline. Note

that the mapping in (B.5) is only defined for the training samples, we can extend it by

interpolating around the nearest neighbors of X[n] in the training data.

To find an optimal decision boundary that will separate class ictal from class baseline

on the manifold, we need to minimize a cost function estimated from the training

samples. To obtain a minimum cost we perform M -fold cross validation on the set

of available training data. This method randomly partitions the dataset into M disjoint

sets [56]. The classifier is trained with 90 % of the data from the M sets and the

remaining randomly chosen 10% is used for testing or validation. The optimality of the

learning parameters for the ridge model will be determined by those values resulting

in minimum classification error of the training set. The error is obtain from the mean

square error computed as shown in (13).

A.3 Related techniques

The purpose of this section is to briefly present related techniques for dimensionality

reduction and clarify the choice of method in this thesis.
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A.3.1 Principal Component Analysis

One of the most commonly used methods for dimensionality reduction and feature

extraction in machine learning is the Principal Component Analysis. PCA performs a

linear transformation on the data and the result is an orthogonal basis set [56]. This

technique also offers an estimate of the intrinsic dimensionality of the data by identifying

the first projection axis in which the largest variance is accumulated. The mathematical

background of Principal Component Analysis is overviewed in e.g., [56,78] and is beyond

the scope of this thesis. Although PCA is used commonly for EEG analysis, it assumes

a linear combinations of neural signals. Since it is not clear that neural signals are mixed

linearly, we have chosen to apply a nonlinear technique and compare it with PCA.

A.3.2 Independent Component Analysis

An extension to PCA is Independent Component Analysis (ICA) which uses higher

order correlations, i.e nonlinear processing to not only orthogonalize the signals but

also separate the original signals. Further details on ICA can be found in [79, 80]. The

goal of this work is to discriminate for arbitrarily probability density functions and

nonlinear mixture of signals.

A.3.3 Correlation dimension

A nonlinear method which does not assume a linear mixture is the correlation dimension

estimation method. Although this method provides an indication of a seizure through

nonlinear dynamics [71, 81], it does not find a lower dimensional representation of the

signals. The decrease on the correlation dimension estimate may suggest that there

exists an intrinsic change in the brain at the ictal state as time evolves where is causing

the complexity of the data to be reduced. During ictal periods the neurons begins to

act synchronously. Neurons are firing in agreement to each other in the region of the

brain where the seizure is occurring.
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A.4 Experiments

This section presents two sets of experimental results; 1) classification of measured data

on an acute rat model of epilepsy and 2) classification of in vivo measured of human

EEG data. The motivation for initially using the acute rat model because it is believed

to be similar to a non-induced set of signals from a human EEG.

A.4.1 Acute rat model of epilepsy

The data used for this work were collected from 64 silver electrodes with 2 kHz sampling

placed on a rat’s scalp in a 8 × 8 grid, as sketched in Fig.A.4. The baseline data were

collected on a normally functional rat’s brain and the ictal state was induced chemically.

For the purposes of training and a priori information, the EEG recordings were labeled

in baseline and ictal states by a neuroscientist. Two out of the 64 channels contained

large amplitude muscular artifacts and the data from these two channels is discarded,

making D = 62. As a pre-processing step the time series is filtered using a 15th order

Chebyshev filter with cutoff frequency of 100 Hz. The selection of this cutoff frequency

was based on the maximum bound of frequency rhythms discussed in [69].

Barrel Field

3 mm

A)

Auditory

B)Figure A.4: Map of 8 × 8 grid of electrodes for scalp EEG measurements on rat acute
model of epilepsy. The barrel field describes points where electrodes are placed and the
auditory center is shown for reference.

The set of training data consists of the concatenation of Xb and Xi with M = 1430,

N = 2 M , and D = 62. A portion of this dataset is used to determine the most appro-
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Figure A.5: Reconstructed manifold using first three principal components from PCA.
This means that the 3 electrodes that best represented the dataset were chosen as
principal components. Each point belongs to an instant in time. The color points are
true labels representing the class (red = ictal and blue = baseline)

priate classifier parameters for the given signals. In this case, we use 10% of baseline

and ictal data, i.e. a 10-fold cross validation was used on the set of available training

data to estimate the optimal learning parameters for the kernel ridge regression. From

these, 90% of Xb and Xi was used to train the classifier and the remaining 10% for

validation. For the purposes of comparison, the lower dimensional representations were

constructed with PCA and Laplacian Eigenmaps. The resulting maps are shown in

Fig.A.5 and Fig.A.6. In these figures, each of the points represent an EEG recording

with dimensionality d, at a given time. In these figures the red points represent ictal

states and the blue represent baseline states which were known a priori from the label-

ing. The colors in the graph represent the state in which each of the points belong to.

The color labels shown here are the true labels for the classes ictal (red) and baseline

(blue). The only difference between Figs.A.5 and A.6 is that the lower dimensional rep-

resentation was constructed by using PCA or Laplacian, but the structure of the plots
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Figure A.6: Reconstructed manifold using first three non-trivial eigenvectors from the
Laplacian eigenmap. Each point belongs to an instant in time. The color points are
true labels representing the class (red = ictal and blue = baseline)

is very different. The practical meaning of these plots in this case is that the Laplacian

Eigenmap approach shows a more organized structure and a natural clustering of the

ictal states. Hence ictal and baseline states become easily separable. This implies that a

threshold can be defined on the manifold that can go back to the time domain data and

provide a marker to the physician indicating the onset of the seizure. The sample points

shown in Fig.A.5 and Fig.A.6 belong to the training set that were pre-labeled by an

expert. The ultimate goal is to identify seizures automatically and therefore the same

approach was applied to non a priori labeled data which is shown in Figures A.7(a) and

A.7(b). The results of this classification and comparison are quantified in TablesA.1

and A.2.

Note that PCA is unable to partition the data into ictal state and baseline state,

whereas the Laplacian eigenmaps reveals the organization of the dataset into ictal and

baseline. It is therefore expected, that the classification on the manifold reconstructed

by the Laplacian eigenmaps will outperform the classification based on the projection

109



of the subspace discovered by PCA.

For this dataset the minimum error on cross-validation was obtained by keeping

d = 10 eigenvectors, and choosing the ridge parameter λ = 0.1. The width of the

Gaussian kernel for the weighted adjacency graph was σA = 0.6, and the width of the

Gaussian kernel for the regression was σR = 0.05. A detailed description of the Gaussian

kernel ridge classifier is presented in the appendix. We used k = 5 nearest neighbors to

construct the adjacency graph. The performance of these algorithms was measured by

calculating the mean square error.

Table A.1: Percentage of Classification Accuracy using Gaussian Kernel Ridge Regres-
sion

Baseline Class Ictal Class Total
Raw Data 78.32 68.53 73.43

PCA 91.04 64.18 77.61
Graph Laplacian 98.51 97.01 97.76

Table A.2: Percentage of Classification Accuracy using Linear Ridge Regression

Baseline Class Ictal Class Total
Raw Data 83.22 98.60 90.91

PCA Projection 90.21 73.43 81.82
Laplacian Manifold 100 88.81 94.91

FiguresA.7(a) and A.7(b) show the outcome of the classification for the validation

set (10 % of the N = 2860 samples) using PCA and the Laplacian eigenmaps for reducing

dimensionality. After using the graph Laplacian method to reduce the dimensionality

of the set, most of the points are properly labeled as seen in Fig.A.7(b). This is not

the case when PCA is used to reduce dimensionality; a large number of points are

misclassified as shown in TableA.1. For reference purposes we have also included the

classification accuracy when the classification is performed directly on the raw data.

The reduction of dimensionality provided by the Laplacian eigenmaps resulted in the

highest classification accuracy.
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A.4.2 Human in vivo electroencephalogram recordings

An extension to this work has been performed using human EEG data. This set comes

from scalp electroencephalograms with 55 electrode channels recording at 256 Hz. As

in the acute rat model of epilepsy dataset, the human data was analyzed using dimen-

sionality reduction methods such as the Graph Laplacian and PCA. A classification

was performed in a reconstructed subspace with lower dimensionality than the original

ambient space. For this set, D = 55 and d = 10. FigureA.8 shows the reconstruction

of the lower dimensional manifold using the Graph Laplacian. The blue crosses corre-

spond to a baseline brain state and red dots to ictal. It is interesting to observe how

the dimensionality of the ictal state seems to be of a lower degree than the baseline

state. This observation is in accord with the observations of [71] and [72] where it was

discussed the noticeable decrease in dimensionality on the neuronal signals before and

during a seizure onset.

In addition to the noticeable decrease in dimensionality for the ictal versus the

baseline states, the behavior of the data as it evolves through time should be observed

carefully. In Fig.A.9 each of the samples in the graph represent an instant in time

from the EEG recordings with dimension d. Notice how the post-ictal and baseline

states represented by “◦” and “x” reside in the same area of the manifold. Both of

these states are related to a normal EEG. However, as the seizure onsets (pre-ictal),

the recording begins to move towards the manifold region that is predominantly resided

by the ictal time samples. These observations can be related back to previous ones

made by using nonlinear dynamics techniques. The time progression from pre-ictal

to ictal states validate the hypothesis of expecting a less chaotic behavior during a

seizure (lower dimensionality). As the seizure progresses the signal is propagated into

a clustered region of the manifold and once it returns to normal state (post-ictal) it

moves towards the more chaotic region of the reconstructed manifold.

The classification on the manifold and the lower dimensional reconstruction ob-

tained from PCA was done by using the kernel ridge method as in Section A.4.1. This

experiments show that the Graph Laplacian combined with the Kernel Ridge Model
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outperforms PCA and Kernel Ridge. The quantitative comparison of these results are

presented on TableA.3. The classification using PCA resulted in 82.20% while the

Laplacian method provided 91.40% classification accuracy.

Table A.3: Human Data: Percentage of Classification Accuracy using Kernel Ridge
Model

Baseline Class Ictal Class Total
Raw Data 93.20 70.40 81.80

PCA Projection 81.60 78.80 82.20
Laplacian Manifold 100 82.80 91.40

A.5 Conclusion

This thesis presented a new approach to classify EEG time series from a rat acute model

of epilepsy and in vivo human EEG using manifold learning techniques. It was shown

that the eigenvectors of the Graph Laplacian provide a natural low dimensional repre-

sentation for the dataset. The projection of the ictal and baseline states on the manifold

are well separated. A kernel ridge classifier was used to find the optimal boundary be-

tween and ictal and baseline states on the manifold. A quantitative evaluation of this

approach using an acute rat model of epilepsy was performed and shown in TablesA.1-

A.3. The experiments showed that the approach presented here outperforms traditional

PCA. This fact can be seen in the significant increase on the detection accuracy from

77.61% with PCA to 97.76% using the graph Laplacian and the kernel ridge classifier.

In traditional Ridge Regression models the set of input data is given as a series

composed of (x1, y1), ..., (xN , yN ) where N is the sample length, y are the sample’s

labels, and x ∈ <D. However, the interest of this work is to perform the classification

of the samples on the lower dimensional space containing the eigenvectors of the Graph

Laplacian instead of the raw data time samples. Hence, the samples used on the ridge

model will be defined as (φT
1 , y1), ...(φT

d , yd) where each φT
i is an N dimensional row

vector corresponding to the number of samples and Φ ∈ <N×d. The kernel ridge model

consists of the ridge coefficients β̂ridge given by,
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β̂ridge = arg min
β
{

N∑

i=1

(
yi − β̂0 −

d∑

j=1

βjφij

)2 (6)

+ λ
d∑

j=1

β2
j }. (7)

as defined in [57, 76, 78]. The learning parameter λ should be carefully chosen to not

introduce higher bias to the output estimate ŷ. Therefore, the choice for an optimum

value of λ should be based on the region where this scalar reaches a stable value for

β̂ridge [82]. Based on the experiments, the optimum λ should be selected between the

range of 0.2 and 0.3. The Kernel Ridge coefficients need also to be optimized as

β̂ridge = arg min
β





N∑

i=1

(
yi − β̂0 −

d∑

j=1

βjφij

)2



 , (9)

subject to:
d∑

j=1

β2
j ≤ s, s > 0.

The problem simplifies into computing the β̂ridge
i where i = 1, ..., d with the following

β̂ridge = (XT X + λI)−1XT y (8)

with offset coefficient β̂0 as

β̂ridge
0 =

[
1
N

N∑

i=1

yi

]
−

[ d∑

j=1

φ̄j β̂
ridge
j

]
. (9)

The Kernel Ridge regression built from β̂ridge maps the input data into a Kernel space

in which the discrimination of nonlinear data is simplified. This mapping is obtained

from

ψi(x) = K(φT
i , ξ), (10)

where φT
i is the ith eigenvector of the graph Laplacian from the training samples and ξ

is an eigenvector from the test set graph Laplacian. The kernel used in this work was

the Gaussian Kernel, defined by:
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K(φT
i , ξ) = exp (−||φT

i − ξ||2/(2σ2)). (11)

The estimated outputs labels, ŷ, resulting from the decision boundary model now be-

come

ŷ = β̂0 +
N∑

i=1

K(φT
i , ξ) (12)

and the classification error is given by

e(x) =
1
N

N∑

i=1

(
yi − ŷi

)2
, (13)

where N is the number of samples, ŷ is the estimated output label and y is the true

known class label.
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Figure A.7: Classification results using reconstructed manifolds from PCA and Lapla-
cian Eigenmaps. The labels in the figure are the result of the classification algorithm.
The corresponding quantitative results are shown in Table A.2; (a) same reconstructed
manifold using PCA shown in Fig.A.5. Various points from the ictal state were misclas-
sified as belonging to baseline, (b) reconstructed manifold using Laplacian eigenmaps
from Fig.A.6 115
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Figure A.8: Reconstructed manifold for in vivo human recordings using the Graph
Laplacian. The first three non-trivial eigenvectors are shown. Each point is an instant
in time. Notice that ictal and baseline states lie on different regions of the reconstructed
manifold, validating the initial hypothesis of this work.
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organized cluster (ictal) marked by red asterisks.
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Appendix B

Embedded Target Detection in

Multispectral Images using

Laplacian Manifolds

B.1 Introduction

The field of Remote Sensing deals with the detection and collection of certain character-

istics of an object measured from a distance. Each object possesses a unique response

to sunlight that is characteristic of its own reflectance. Currently, there are sensors ca-

pable of measuring the reflectance from different objects at different wavelengths. Some

currently available sensors are the multispectral and hyperspectral sensors. Several of

the existing airborne and spaceborne, multispectral and hyperspectral, sensors acquire

greater amount of spectral information by collecting data on narrow band channels on

the electromagnetic spectrum. By acquiring this information, a spectral signature that

is particular to an object is obtained, thus obtaining the object’s spectral information

and reflectance. The amount of spectral information is correlated to how narrow are the

bands in each sensor. For example the hyperspectral, Airborne Visible/Infrared Imag-

ing Spectrometer, (AVIRIS), obtains data between 0.4µm to 2.45µm at 10 nm intervals

in 224 channels.
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Even though the aforementioned sensors provide much information about the scene,

the detection of particular objects of interest becomes cumbersome due to several factors.

For example, in subsurface sensing the fundamental goal is the detection of objects

embedded in a diffusive and dispersive medium such as the atmosphere, the ocean

waters, and organic tissue. Therefore, it is essential to develop a pattern recognition set

of tools that retrieves the information necessary to identify the objects of interest.

In the field of remote sensing and pattern recognition, one of the main goals is

to detect, classify and identify different objects based on their features. The term

detection is referred to the identification of a target of interest based on prior statistical

information of the target given that no other feature on the data is of interest and other

prior information of other features are known. Classification, on the other hand, deals

with the assignment of groups or classes to features of similar characteristics, in this

case, statistical characteristics. Classification can be viewed as a data discrimination

process. Detection and classification depend highly on the estimation of parameters in

order to be able to identify and discriminate targets and classes. Estimation can be

described as a statistical inference based on a set of samples given that the statistics

of the population cannot be calculated. Estimation is used to provide the classifiers

with the estimated statistical information, i.e. mean and covariance matrices, that is

necessary to these classifiers to work.

The goal in classification theory is to obtain a decision boundary between a group

of objects or classes from the data being analyzed and to be able to discriminate the

data amongst them. For example Figure 3 shows, as an example, an ideal linear deci-

sion boundary able to discriminate the features of class wi from the ones in class wj ,

classifying and identifying feature X as belonging to class wj .

There are other decision rules in classification that use additional statistical param-

eters of the data. For example in quadratic classifiers both the first and second order

statistics are used. Figure 4, shows an example of the classification of feature X by means

of a quadratic decision boundary. The selection of a specific decision rule depends on

the statistical characteristics of the data. In cases where the data is well separated, a
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linear classifier could provide high accurate results. For the situation when the data

cannot be discriminated by using only first order statistics, then quadratic classifiers

could improve the results of the classification [8]. These decision boundary rules are

used in two common classification mechanisms: unsupervised mechanisms and super-

vised machine learning algorithms. Also, there is a class of algorithms that does not

depend on the estimation of the data statistical parameters. These group of algorithms

are usually refereed to as non-Bayesian classifiers.

This chapter will make use of a non-Bayesian classifier based on Gaussian kernel

non-linear classification. It includes various synthetic experiments performed on a set of

sample hyperspectral imagery acquired by HYPERION, HYDICE, and AVIRIS sensors.

This set of sensors collect information in more than 200 spectral bands over the visible

through short-wave infrared wavelengths including 0.4µm to 2.5µm. In this range,

a large portion of the solar radiation is recorded as well as a contribution from the

thermal band [83]. Several of the currently available sensors are able to supply spectral

resolutions of about 10 nm. This accounts for very detailed and useful information

regarding specific targets in the image that could be exploited in the implementation of

classification and detection algorithms.

Several experiments were conducted varying distinct parameters such as : number of

bands, number of frames, with the addition of noise, coarsening and normally distributed

random jitter. Section B.2 presents the methodology followed to generate the set of

data that was used to validate the performance of the proposed algorithms. Section

B.3 describes the unsupervised techniques applied for manifold learning and target

detection. Some of the results will be shown in Section B.4.

B.2 Generation of Data Set

B.2.1 Sensor: HYPERION

The simulated data in this work was acquired by HYPERION. It is shown in Fig.B.1.

HYPERION offers up to 220+ contiguous spectral bands measuring from 0.4µm to
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2.5µm. It acquires visible/near-infrared (400 nm to 1000nm) and shortwave infrared

(900 nm to 2500 nm) spectral data. The spatial resolution of HYPERION is 30 meters

and each image covers a 7.5 km by 100 km area.

Figure B.1: Sample of image acquired by Hyperion sensor. This sensor offers up to 220+
contiguous spectral bands measuring from 0.4µm to 2.5µm. It acquires visible/near-
infrared (400 nm to 1000nm) and shortwave infrared (900 nm to 2500 nm) spectral
data. The spatial resolution is 30 meters and each image covers a 7.5 km x 100 km area

In this stage of the work, an algorithm was developed to mimic a set of data of

hyperspectral imagery. This algorithm simulates several disturbances and noise con-

ditions. The steps describing the data generation algorithm developed is presented in

Figure B.2.

The generation method is as follows. First, select the multispectral/hyperspectral image

of interest. In order to simulate the suggested target profile, several black-body curves

were computed at various temperatures. The obtained curves are shown in Fig.B.3.

Since the target of interest follows a given temperature profile

Since the target of interest follows a given temperature profile, the approximation of

temperature versus phase in time can be approximated as shown in B.4.

121



Figure B.2: Flowgraph of synthetic data generation process to embed target in hyper-
spectral image

B.3 Clustering on Manifold

This work proposes an approach based on manifold learning similar to the one used in

Appendix A. This method assumes that there exists a well sampled underlying lower

dimensional manifold in which the classes in the data are naturally discovered. In

addition to finding the manifold, a clustering algorithm based on C-means is applied to

the data to label the classes as corresponding to background or target. Both of this two

methods do not require any training or a priori knowledge of the classes in the data.

However, a cross validation step is included in order to select the parameters in which

122



0.5 1 1.5 2 2.5

x 10
−6

0

1000

2000

3000

4000

5000

6000

Blackbody Curves

Wavelengths

In
te

ns
ity

Figure B.3: Blackbody curves for different embedded target profiles to be embedded in
hyperspectral data

5 10 15 20 25 30
295

400

600

800

1000

1200

1400

1600

1800

2000

2200

Frames

T
em

pe
ra

tu
re

 ° 
K

Target Temperature Profile vs Number of Frames

5 Frames
10 Frames
20 Frames
30 Frames

Figure B.4: Profile of target temperature vs number of frames used in the synthetic set
of temporal and hyperspectral data

the error achieves a minimum.
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B.3.1 Laplacian Eigenmaps

The samples obtained from the synthetic data can be used to approximate the true

underlying manifold of the hyperspectral image. We build a graph that should provide

a good approximation to the geometry of the manifold. A graph that should provide a

good approximation to the geometry of the manifold is built. The vertices of the graph

are pixels at a given instant in time with spectral information. Let X((pi, λj), t) ∀t =

1, ..., N , where t is time, N is the number of frames, pi is pixel i and λj a spectral band,

be a column of X. The edges define the proximity on the underlying manifold. The

vertices are connected using the k-nearest neighbors approach: the nodes i and j are

connected by an edge if i is among the k-nearest neighbors of j. A weight is assigned,

Wi,j , to the edge between the nodes i and j and given by

Wi,j = exp(−‖X((pi, λi), t)−X((pj , λj), t)‖
/
(2σ2)). (B.1)

Once the connected graph is constructed, its Laplacian matrix is computed, L, on the

graph as defined by Li,j = Ai,j −Wi,j , where the adjacency matrix, A, is defined as

Ai,j =





∑
k Wk,i if i = j

0 otherwise.
(B.2)

The the eigenvectors, [φ1, ..., φD] are computed as the solution to the following eigenvalue

problem

Lφk = κkAφk, (B.3)

where κk is the corresponding eigenvalue. As is explained in [10], [73], the eigenvectors,

φ1, ..., φD, provide the optimal embedding of the manifold. The mapping defined by

X → Φ(X) = [φ1|...|φD]T (X)

preserves the Euclidean distance locally by minimizing the following distortion

∑

ij

||φi − φj ||2Wij = tr(ΦT LΦ). (B.4)
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The vector φ that minimizes (B.4) is provided by the lowest non-trivial eigenvalue

solution of the generalized eigen-problem in (B.3). The reduction of dimensionality is

achieved by defining the mapping from RD → Rd as follows

X((pi, λj), k) → X̃((pi, λj), k) = column k of Φ̃(X) = [φ1|...|φd]T (X). (B.5)

B.3.2 C-means Clustering

Once the eigenvectors from the Laplacian are obtained then a classic C-means clustering

algorithm is applied to this set. The goal of this algorithm is to find the C mean vectors

µ1, µ2, ..., µC or centroids of the data that minimize the distance between the points and

the centroids. In this work , the distance used is given by the Euclidean metric.

d = ||X̃((pi, λj), t)− X̃((pi, λj), t)||2 ∀t = 1, ..., N (B.6)

The description of the C-means clustering algorithms as delineated in [56] follows.

Classification Algorithm

begin initialize n,c,µ1µ2, , ..., µc

do classify n samples according to nearest µi

recompute µi

until no change in µi

return µ1µ2, , ..., µc

end

B.4 Experiments and Results

Several experiments were conducted using an excerpt of an original image acquired by

HYPERION. Variations of irradiance noise, σIRR, between the values of 0.05 and 0.1

are presented. Also, the range for the number of frames varied from 5,10,20 for some

of the experiments. The number of bands ranged from 1, 5, 10. The target size with

respect to the pixel size changed from 0.20%, 0.25 %, and 0.5%. The methodology

followed the algorithm described previously and also explained in Fig.B.2.
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Data Generation Algorithm

1) Select a region of interest from an original hyperspectral image

2) Select number of bands to reduce

3) Select number of frames

4) Introduce percentage of irradiance noise

5) Select target size in pixels

6) Find the underlying manifold using Laplacian Eigenmaps

a)Choose kernel width

a)Choose k-nearest neighbors

7) Perform C-means clustering on the eigenvectors of the Laplacian matrix
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Table B.1: Parameter description of synthetic data sets used to test Laplacian eigenmaps
algorithms and embedded target detection

NN-size Target size (pixels) Noise std Frames Band Subset
Set 1 10 10 0 5 5
Set 2 10 5 0.05 5 5
Set 3 10 10 0 10 1
Set 4 10 5 0.05 10 10
Set 5 20 5 0.1 20 5

Table B.2: Results of clustering using Laplacian eigenmaps and C-means. Accuracy
results for background, target, and total are displayed in percentages

textAccuracy Background Accuracy Target Total Accuracy
Set 1 100 76.1 97.8
Set 2 70.95 100 77.40
Set 3 100 0 (undetected) 90
Set 4 89.92 95.31 91.5
Set 5 83.16 100 86.4
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[77] M. Ramı́rez-Vélez, R. Staba, D. Barth, and F. Meyer, “Nonlinear classification of
eeg data for seizure detection,” Imaging Nano to Macro, 2006, 3rd IEEE Inter-
national Symposium on, pp. 956–959, April 2006.

[78] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
Springer, 2001.

[79] J. Cardoso, “Sources separation using higher order moments,” Proceedings of the
International Conference on Acoustic, Speech and Signal Processing, pp. 2109–
2112, 1989.

[80] P. Comon, “Independent component analysis, a new concept?” Signal Processing,
vol. 36, pp. 287–314, 1994.

[81] P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attrac-
tors,” Physica D, vol. 9, pp. 189–208, October 1983.

[82] D. Montgomery, E. Peck, and G. Vining, Introduction to Linear Regression Anal-
ysis, third edition ed. John Wiley and Sons, Inc., 2001.

[83] G. Healey and D. Slater, “Models and methods for automated material identifi-
cation in hyperspectral imagery acquired under unknown illumination and atmo-
spheric conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol.
37-6, pp. 2706–2717, 1999.

[84] R. Q. Quiroga, “Time-frequency methods and chaos theory,” Ph.D. dissertation,
Medical University of Lübeck, Germany, May 1998.
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