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A B S T R A C T

This paper concerns a two-field reduced basis algorithm for the metamodelling of parametrized one-way coupled
thermoelasticity problems based on the constitutive relation error (CRE) estimation. The coupled system consists
of parametrized thermal diffusion and elastostatic equations which are explicitly coupled in a one-way manner.
The former can be solved in advance independently and the latter can be solved afterwards using the solution of
the former. For the fast and accurate analysis of the coupled system, we developed an algorithm that can choose
adaptively the number of reduced basis functions of the temperature field to approximate the CRE equality of the
mechanical field. We compute approximately the upper bound for the true errors of displacement and stress fields
in energy norms. To enable this, a two-field greedy sampling strategy is adopted to construct the displacement
and stress fields in an efficient manner. The computational efficiency of the proposed approach is demonstrated
with computing the effective coefficient of thermal expansion of heterogeneous materials.

1. Introduction

Coupled systems exist in many engineering applications such
as fluid-structure interaction, thermo-mechanical, electro-mechanical,
electro-magnetic, and so on. The coupling is caused by the interaction
between different subsystems describing different physical quantities
such as temperature, displacement, velocity, pressure, etc. After dis-
cretizing coupled systems with certain traditional numerical methods
such as finite-element and finite-volume methods, their resulting alge-
braic systems are often complex and very large. Such a complex and
large algebraic system entails difficulties for the real-time computation
which is vital for tailoring responses of the complex system via com-
putational system design approach. To circumvent such difficulties, the
purpose of this work is to develop a two-field model order reduction
(MOR) technique that can enable metamodelling of the coupled system
for the fast and accurate computation.

In the following, we provide a brief literature review on the use of
MOR techniques for coupled problems, as a more exhaustive overview
on this topic can be found in Refs. [1,2]. The first MOR technique to
deal with coupled systems is the component mode synthesis method
proposed for structural dynamics problems [3–5]. After that, different
MOR techniques have been proposed and can be categorized into sev-
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eral types. For examples, MOR techniques based on systems and con-
trol theory such as balanced truncation [6,7], MOR techniques based on
approximation theory such as moment-matching [8,9], MOR techniques
such as the reduced basis (RB) method [10,11], proper orthogonal
decomposition (POD) method [12,13] and proper generalized decom-
position method [14] have been successfully applied to coupled sys-
tems, and have shown significant efficiency for various multi-physics
problems.

In this work, we focus on the application of a reduced order model
(ROM) for the class of one-way coupled thermoelasticity problems. In
particular, a one-way coupled thermoelasticity problem shall include
one thermal elliptic partial differential equation (PDE) and one elas-
tic elliptic PDE, where the former can be solved in advance indepen-
dently and the latter is solved afterwards using the solution of the
former [15,16]. Due to this special property, the application of the
ROM for the thermal PDE is straightforward and simple: any avail-
able ROM with associated error estimation technique (e.g., a snapshot-
proper orthogonal decomposition method [17–20], a hyper-reduction
technique [21,22], a proper generalized decomposition method [23],
reduced basis with a successive constraint method [24,25], or a recent
two-field reduced basis method (TF-RBM) [26]) will work well for
such thermal problem. However, a posteriori error estimation for the
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ROM of the elastic PDE is complicated because of the passing of the
approximated ROM temperature field from the thermal PDE to the elas-
tic one. To the best of our knowledge, there is no work in literature
to evaluate such an error of the elastic PDE in this context. As ref-
erences, the application of ROM techniques for the class of coupled
thermoelasticity problems can be found in, for example, [7,27]. These
works belong to the class of either balance truncation or moment-
matching methods which were described briefly in the previous para-
graph.

In this paper, we pursue the RB methodology with a CRE estimation
to handle such parametrized coupled thermoelasticity problems. In par-
ticular, we use the TF-RBM with the CRE estimation technique [26] to
approximate certifiably both thermal and elastic PDEs. As mentioned in
the previous paragraph, while such an approach to handle the thermal
PDE is straightforward, that to handle the elastic PDE is not trivial and
requires some special modifications. This is due to the appearance of
expansion terms which depend on the true error of the RB temperature
field, besides the usual true errors of the RB displacement and stress
fields in the CRE equality.

Therefore, the first purpose of this paper is to propose an algorithm
to choose adaptively the number of RB basis functions of the temper-
ature field in such a way that these expansion terms are eliminated
— thus recovers approximately the CRE equality. In other words, we
recover the upper boundedness of the CRE estimator for true errors
of RB displacement and stress fields [26]. In turn, this CRE estima-
tor is used in a two-field greedy sampling algorithm to build the
corresponding reduced spaces of these displacement and stress fields.
The second purpose of this paper is to extend the CRE upper error
bound to goal-oriented error bounds for several quantities of inter-
est (QoIs), where these QoIs are linear functionals of the displace-
ment field. (Note that the QoIs of the thermal PDE are addressed
in the RB approximation of the thermal PDE in advance.) Based on
these goal-oriented error bounds, the final objective is to compute
the certified ROM approximations of the effective coefficient of ther-
mal expansion (CTE) for parametrized coupled thermoelasticity prob-
lems.

The remainder of the paper is organized as follows. In section 2, we
state the exact parametrized coupled thermoelasticity problem and its
finite-element discretization. In section 3, we describe our ROM approx-
imations for the thermal equation in section 3.1 and the elastic equa-
tion in section 3.2. While section 3.1 repeats briefly the work in Ref.
[26], section 3.2 and section 4 present all the novel proposed theory of
this paper. In particular, section 3.2 is devoted to the CRE estimator,
the proposed algorithm to select appropriately the number of RB basis
vectors for the temperature field, and the two-field greedy sampling
algorithm. Goal-oriented error bounds and the extension to compute
the effective CTE are presented in section 4. In section 5, the perfor-
mance of all the proposed algorithms is investigated for a 2D material
homogenization problem. Finally, we provide some concluding remarks
in section 6.

2. Parametrized explicitly coupled thermoelasticity equations

2.1. Exact formulation

2.1.1. Strong form
We consider the problem of determining the displacement field u(x)

and the (excess) temperature field 𝜃(x)1 within a static thermoelas-
tic body occupying the physically spatial domain Ω ∈ ℝd (d = 2, 3).
The displacement field u ∈  (Ω) =

(
H1(Ω)

)d and the temperature field

1 𝜃tot(x) = 𝜃ref + 𝜃(x) where 𝜃tot(x) is the total (absolute) temperature and 𝜃ref is the
reference temperature corresponding to the zero thermal strains state, which motivates
the notion excess temperature for 𝜃.

𝜃 ∈ Θ(Ω) = H1(Ω) satisfy the nonhomogeneous Dirichlet boundary con-
ditions u = w and 𝜃 = 𝜗 on the parts Γu and Γ𝜃 of the boundary Γ, respec-
tively. Here, H1(Ω) =

{
v ∈ L2(Ω) |∇v ∈ (L2(Ω))d

}
is a Hilbert space and

L2(Ω) is the space of square integrable functions over Ω. The body may
also be subjected to prescribed tractions t, body forces b, prescribed
flux h and heat source f on the boundary parts Γt , Ω, Γh and Ω, respec-
tively.

We define a set of input parameters  ⊂ ℝP, a typical point of which
is denoted by 𝜇 ≡ (𝜇1,… , 𝜇P). In particular, the force densities b, t; the
heat densities h, f ; the Dirichlet boundary conditions w, 𝜗 and the mate-
rial properties of the structure may be functions of parameter 𝜇. We
assume that Ω, Γu and Γ𝜃 do not undergo any parametric changes.

For a given parameter 𝜇, the strong formulation is stated as: obtain
(𝜃(𝜇), u(𝜇)) by solving the following one-way coupled system

.

Heat equation
⎧⎪⎨⎪⎩
−k(𝜇)∇2𝜃(𝜇) = f (𝜇) on Ω,

𝜃 = 𝜗 on Γ𝜃,

q(𝜇) = k(𝜇) · ∇𝜃(𝜇) on Ω,

(1)

Elastic equation
⎧⎪⎨⎪⎩
−div (𝜎(u(𝜇))) = b(𝜇) on Ω,

u = w on Γu,

𝜎(u(𝜇)) = D(𝜇) ∶ 𝜖(u(𝜇)) − D(𝜇) ∶ 𝜖0(𝜃(𝜇)) on Ω.

(2)

Here, q(𝜇) is the flux field and k(𝜇) is the heat conductivity tensor
for the heat equation. For the elastic equation, 𝜖(v) = 1

2

(
∇v + ∇vT) is

the strain field, 𝜎(𝜇) is the Cauchy stress field, D(𝜇) is the fourth-order
Hooke’s elasticity tensor which depends on the two Lamé constants 𝜆(𝜇)
and G(𝜇), 𝜖0(𝜃(𝜇)) is the thermal strain which depends on the tempera-
ture field 𝜃(𝜇) that was solved from Eq. (1) (see for instance Eq. (1.9) in
Ref. [28] or Eq. (8.23) in Ref. [29]). System (1) and (2) is thus one-way
coupled in this sense. (Interested readers can refer to the full coupled
thermomechanical system, for instance, arising in shear band modelling
application [30,31].)

2.1.2. Weak form
For a given parameter 𝜇, the corresponding weak form is described

by

−∫Ω
q(𝜇) · ∇v1 dΩ +∫Ωf (𝜇) · v1 dΩ +∫Γh

h(𝜇) · v1 dΓ = 0, ∀v1 ∈ΘAd,0(Ω),

(3a)

−∫Ω
𝜎(𝜇) ∶ 𝜖(v2) dΩ +∫Ωb(𝜇) · v2 dΩ +∫Γt

t(𝜇) · v2 dΓ = 0, ∀v2 ∈ Ad,0(Ω).

(3b)

Here, ΘAd(Ω;𝜇) = {v ∈ Θ(Ω) | v|Γ𝜃 = 𝜗(𝜇)} and ΘAd,0(Ω) = {v ∈
Θ(Ω) | v|Γ𝜃 = 0} are the spaces which contain the full and homo-
geneous temperature fields;  Ad(Ω; 𝜇) =

{
v ∈  (Ω) | v|Γu = w(𝜇)

}
and  Ad,0(Ω) =

{
v ∈  (Ω) | v|Γu = 0

}
are the spaces which contain

the full and homogeneous displacement fields. The solution to the
parametrized heat conduction problem (3a) is an admissible pair
(𝜃(𝜇), q(𝜇)) ∈ ΘAd(Ω;𝜇) × Ad(Ω;𝜇) that verifies the isotropic linear
constitutive law

q(𝜇) = k(𝜇) · ∇𝜃(𝜇). (4)

Similarly, the solution to the parametrized problem of elasticity is
an admissible pair (u(𝜇), 𝜎(𝜇)) ∈  Ad(Ω;𝜇) × Ad(Ω; 𝜇) that verifies the
isotropic linear constitutive law

𝜎(𝜇) = D(𝜇) ∶ 𝜖(u(𝜇)) − D(𝜇) ∶ 𝜖0(𝜃(𝜇)). (5)

By substituting (4) into (3a) and (5) into (3b), the parametric prob-
lem of thermoelasticity can be written in the following primal varia-
tional form: for any 𝜇 ∈ , find 𝜃(𝜇) ∈ ΘAd(Ω;𝜇) and u(𝜇) ∈  Ad(Ω; 𝜇)
such that

97



K.C. Hoang et al. Finite Elements in Analysis and Design 141 (2018) 96–118

a𝜃𝜃
(
𝜃(𝜇), v1;𝜇

)
= f 𝜃

(
v1;𝜇

)
, ∀v1 ∈ ΘAd,0(Ω), (6a)

auu (u(𝜇), v2;𝜇
)
= f u (v2;𝜇

)
+ au𝜃 (𝜃(𝜇), v2;𝜇

)
, ∀v2 ∈  Ad,0(Ω)

(6b)

where

a𝜃𝜃
(
𝜃, v1;𝜇

)
= ∫Ωk(𝜇)∇𝜃∇v1 dΩ, (7a)

f 𝜃
(
v1;𝜇

)
= ∫Ωf (𝜇) · v1 dΩ + ∫Γh

h(𝜇) · v1 dΓ, (7b)

auu (u, v2;𝜇
)
= ∫Ω𝜖(u) ∶ D(𝜇) ∶ 𝜖(v2) dΩ, (7c)

f u (
v2;𝜇

)
= ∫Ωb(𝜇) · v2 dΩ + ∫Γt

t(𝜇) · v2 dΓ, (7d)

au𝜃 (𝜃, v2;𝜇
)
= ∫Ω𝜖0(𝜃) ∶ D(𝜇) ∶ 𝜖(v2) dΩ, (7e)

respectively. We recall that a𝜃𝜃 ∶ ΘAd(Ω) × ΘAd,0(Ω) ×,
auu ∶  Ad(Ω) × Ad,0(Ω) × are symmetric, continuous and coer-
cive parametrized bilinear forms. We assume that f 𝜃 ∶ ΘAd,0(Ω) ×,
f u ∶  Ad,0(Ω) × are continuous, bounded linear forms, and that the
bilinear form au𝜃 ∶ ΘAd(Ω) × Ad,0(Ω) × is sufficiently regular. Under
these conditions, there exists unique “weak” solutions 𝜃(𝜇) ∈ Θ(Ω) to
(6a) and u(𝜇) ∈  (Ω) to (6b).

Multiple QoIs can be extracted from u(𝜇) and 𝜃(𝜇) as

Qi(𝜇) = Qu
i (𝜇) + Q𝜃

i (𝜇) = 𝓁u
i (u(𝜇)) + 𝓁𝜃i (𝜃(𝜇)) , 1 ≤ i ≤ nQ (8)

with 𝓁𝜃i ∶ ΘAd(Ω) × and 𝓁u
i ∶  Ad(Ω) × being continuous and

bounded linear forms. Outputs 𝓁𝜃,ui may be compliant or noncompliant
linear functionals. Notice that system (6) (or (3)) is explicitly coupled
in a staggered manner, i.e., one-way coupled. In other words, for given
any input parameter 𝜇 ∈ , (6a) (respectively (3a)) is solved indepen-
dently first to obtain the temperature field 𝜃(𝜇). This resulting 𝜃(𝜇) is
then substituted to (7e) to solve the elastic Eq. (6b) (respectively (3b))
to get the corresponding displacement field u(𝜇). Finally, the QoIs are
computed from (8).

A crucial assumption to efficiently deal with parametrized problems
is the affine decomposition property of the operators that governs our
problem. In particular, ∀𝜃 ∈ ΘAd(Ω), v1 ∈ ΘAd,0(Ω), ∀u ∈  Ad(Ω), v2 ∈
 Ad,0(Ω), 𝜇 ∈ , we require that

a𝜃𝜃
(
𝜃, v1;𝜇

)
=

Q𝜃𝜃∑
q=1

𝜚𝜃𝜃q (𝜇) a𝜃𝜃q (𝜃, v1), (9a)

f 𝜃
(
v1;𝜇

)
=

Q𝜃∑
q=1

𝜚𝜃q(𝜇) f 𝜃q (v1), (9b)

𝓁𝜃i
(
v1;𝜇

)
=

Q𝓁𝜃i∑
q=1

𝜚
𝓁𝜃i
q (𝜇) 𝓁𝜃i,q(v1), 1 ≤ i ≤ nQ, (9c)

auu (u, v2;𝜇
)
=

Quu∑
q=1

𝜚uu
q (𝜇) auu

q (u, v2), (9d)

f u (v2;𝜇
)
=

Qu∑
q=1

𝜚u
q(𝜇) f u

q (v2), (9e)

𝓁u
i
(
v2;𝜇

)
=

Q𝓁u
i∑

q=1
𝜚
𝓁u

i
q (𝜇) 𝓁u

i,q(v2), 1 ≤ i ≤ nQ, (9f)

for some (preferably) small integers Q𝜃𝜃,Q𝜃,Q𝓁𝜃i ,Quu,Qu and Q𝓁u
i . Here,

the smooth functions 𝜚•q ∶  → ℝ depend on 𝜇 but all the bilinear and
linear forms a•q, f•q and 𝓁•

i,q do not depend on the parameter. In practice,

such an affine decomposition is at hand if the parametrized data are
originally given in the form of separate variables; namely

k(x, 𝜇) =
nk∑
i=1

𝛾k
i (𝜇)ki(x), ∀𝜇 ∈ ,x ∈ Ω; (10a)

h(x, 𝜇) =
nh∑
i=1

𝛾h
i (𝜇)hi(x), ∀𝜇 ∈ ,x ∈ Γh, (10b)

f (x, 𝜇) =
nf∑

i=1
𝛾f
i (𝜇) f i(x), ∀𝜇 ∈ , x ∈ Ω, (10c)

𝜗(x, 𝜇) =
n𝜃,w∑
i=1

𝛾𝜃,wi (𝜇)𝜗i(x), ∀𝜇 ∈ , x ∈ Γ𝜃 ; (10d)

D(x, 𝜇) =
nD∑
i=1

𝛾D
i (𝜇)Di(x), ∀𝜇 ∈ , x ∈ Ω; (10e)

t(x, 𝜇) =
nt∑

i=1
𝛾t
i (𝜇) ti(x), ∀𝜇 ∈ , x ∈ Γt , (10f)

b(x, 𝜇) =
nb∑
i=1

𝛾b
i (𝜇)bi(x), ∀𝜇 ∈ , x ∈ Ω, (10g)

w(x, 𝜇) =
nu,w∑
i=1

𝛾u,w
i (𝜇)wi(x), ∀𝜇 ∈ , x ∈ Γu. (10h)

Here all the 𝛾•i (𝜇) ∶  → ℝ are explicitly known functions of the param-
eter 𝜇, while ki(x), hi(x), f i(x), 𝜗i(x), Di(x), ti(x), bi(x) and wi(x) are oper-
ators/functions that do not depend on 𝜇.

Lastly, by inserting (10) into (7) we can easily infer all the bilinear
and linear forms in (9). For example, insert equation (10a) into (7a),
we can see in (9a) that 𝜚𝜃𝜃q (𝜇) = 𝛾k

q (𝜇), a𝜃𝜃q (𝜃, v1) = ∫Ωkq(x)∇𝜃∇v1, 1 ≤
q ≤ Q𝜃𝜃 and Q𝜃𝜃 = nk. We do not provide the definitions of all bilinear
and linear forms in (9) here but they can be inferred easily by the same
way as described above.

2.2. Finite-element discretization

We approximate the solutions of the coupled system (6) using the
finite-element method (FEM). The finite-element (FE) solution spaces
are defined as

Θh(Ω) =
{

w ∈ Θ(Ω) | w ∈ span
{

N̂i, 1 ≤ i ≤ nn

}}
, (11a)

 h(Ω) =
{

v ∈  (Ω) | ∀j ∈ {1,… ,d}, vj ∈ span
{

N̂i, 1 ≤ i ≤ nn

}}
,

(11b)

where vj denotes the jth component of the vector field v and N̂i’s are
compactly supported FE shape functions. Here, nn is the number of
nodes in the FE mesh and  𝜃 and  u represent the dimensions of the
FE spaces Θh,0(Ω) and  h,0(Ω) (defined in the following paragraphs),
respectively.

Let Θh,0(Ω) = Θh(Ω) ∩ ΘAd,0(Ω) be the space of FE temperature fields
that vanish on Γ𝜃 and 𝜃p(𝜇) be a particular field of ΘAd(Ω;𝜇), for any
𝜇 ∈ . The FE approximation 𝜃h(𝜇) of 𝜃(𝜇) is the solution to the fol-
lowing variational problem [32]: find 𝜃h(𝜇) ∈ Θh,0(Ω) + {𝜃p(𝜇)} such
that

a𝜃𝜃
(
𝜃h(𝜇), v1;𝜇

)
= f 𝜃

(
v1;𝜇

)
, ∀v1 ∈ Θh,0(Ω). (12)

We assume that the parametrized Dirichlet boundary conditions
conform to the FE space, meaning that Θh(Ω) ∩ ΘAd(Ω; 𝜇) ≠ {}. In this
context, 𝜃p(𝜇) can always be chosen in the FE space Θh(Ω). The varia-
tional problem (12) can be recast in the form
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a𝜃𝜃
(
𝜃h,0(𝜇), v1;𝜇

)
= f 𝜃

(
v1; 𝜇

)
− a𝜃𝜃

(
𝜃p(𝜇), v1;𝜇

)
, ∀v1 ∈ Θh,0(Ω).

(13)

As 𝜃p(𝜇) is known, we denote f̂ 𝜃
(
v1;𝜇

)
= f 𝜃

(
v1;𝜇

)
− a𝜃𝜃

(
𝜃p(𝜇), v1;𝜇

)
.

Then, the final variational form is: for a given 𝜇 ∈ , find 𝜃h,0(𝜇) ∈
Θh,0(Ω) such that

a𝜃𝜃
(
𝜃h,0(𝜇), v1;𝜇

)
= f̂ 𝜃

(
v1; 𝜇

)
, ∀v1 ∈ Θh,0(Ω). (14)

The FE solution is obtained by using the lifting identity 𝜃h(𝜇) = 𝜃h,0(𝜇) +
𝜃p(𝜇). Under standard assumptions, the linear system (14) possesses a
unique solution.

Following a completely similar treatment, the final variational form
for the elastic Eq. (6b) is: for a given 𝜇 ∈ , find uh,0(𝜇) ∈  h,0(Ω) such
that

auu
(

uh,0(𝜇), v2;𝜇
)
= f̂ u (

v2; 𝜇
)
, ∀v2 ∈  h,0(Ω), (15)

where f̂ u (
v2;𝜇

)
= f u (

v2; 𝜇
)
− auu (

up(𝜇), v2;𝜇
)
+ au𝜃 (𝜃h(𝜇), v2;𝜇

)
.

Here,  h,0(Ω) =  h(Ω) ∩ Ad,0(Ω) is the space of FE displacement
fields that vanish on Γu and up(𝜇) is a particular displacement field
of  Ad(Ω;𝜇), for any 𝜇 ∈ . The FE displacement solution is then
obtained by using the lifting identity uh(𝜇) = uh,0(𝜇) + up(𝜇). Similar to
(14), the linear system (15) also possesses a unique solution (which
depends on the FE temperature field 𝜃h(𝜇)).

The FE QoIs can then be evaluated as

Qh
i (𝜇) = Qh,u

i (𝜇) + Qh,𝜃
i (𝜇) = 𝓁u

i

(
uh(𝜇)

)
+ 𝓁𝜃i

(
𝜃h(𝜇)

)
, 1 ≤ i ≤ nQ .

(16)

In the following, we assume that the FE spaces are sufficiently fine
so that any relevant measure of the FE errors eh

𝜃
(𝜇) = 𝜃(𝜇) − 𝜃h(𝜇) and

eh
u(𝜇) = u(𝜇) − uh(𝜇) are very small for all 𝜇 ∈ . In this context, the

source of error will come from using the metamodelling technique
described in the next sections.

3. Reduced basis approximations

The basic idea of projection-based reduced order modelling relies on
the fact that the solutions of the parametrized boundary value problem
reside on a smooth and low-dimensional parametrically induced mani-
fold. The governing equations can then be projected onto this manifold,
leading to a reduced system of equations that can be solved inexpen-
sively for any parameter set.

In this work, we propose to use the TF-RBM approach [26,33]
to build the ROM models for the explicitly coupled thermoelastic-
ity problem and assess the approximated quality of these ROM mod-
els using the CRE bounding technique [23,26]. With this spirit, the
heat Eq. (14) is approximated using one TF-RBM approach with
corresponding CRE bounds, while the elastic Eq. (15) is approxi-
mated by another TF-RBM with other CRE bounds. All these con-
tents are presented in this section. However, due to the length limit
of the paper, we only present the necessary equations with the
new proposed techniques (section 3.2), and refer readers to [26] for
full details of standard/repeated equations and algorithms (section
3.1).

3.1. Two-field reduced basis approximations for the heat diffusion equation

3.1.1. Reduced order model for the temperature field
To apply the reduced basis method for general nonhomogeneous

Dirichlet boundary condition problems, we perform a lifting of the FE
solution over the parameter domain

𝜃h(𝜇) = 𝜃h,0(𝜇) + 𝜃h,p(𝜇), ∀𝜇 ∈ . (17)

Here, 𝜃h,0(𝜇) ∈ Θh,0(Ω), i.e., 𝜃h,0(𝜇) = 0 on Γ𝜃 for any 𝜇 ∈ , while
𝜃h,p(𝜇) ∈ Θh(Ω) satisfies exactly the nonhomogeneous Dirichlet bound-
ary conditions. This equation is to be understood as follows: for given a
valid lifting 𝜃h,p(𝜇), the complementary part 𝜃h,0(𝜇) can be formally
calculated from the knowledge of 𝜃h(𝜇). We approximate 𝜃h,0(𝜇) by
its projection in a reduced vector space, while the lifting 𝜃h,p(𝜇) is an
explicit function of the parameters. The computation of 𝜃h,p(𝜇) is stan-
dard in literature and thus is not repeated here. Readers can refer to
[26] (section 3.1.2) or [33] for the detailed computation.

Using a global lifting technique and with the assumption of the
affine form for prescribed temperatures, the FE lifting 𝜃h,p(𝜇) can be
defined by the following affine expansion

𝜃h,p(𝜇) =
n𝜃,w∑
i=1

𝛾𝜃,wi (𝜇)𝜓𝜃i , ∀𝜇 ∈  (18)

where 𝜓𝜃i is a set of n𝜃,w of temperature fields that can be obtained
by solving n𝜃,w standard FE problems with nonhomogeneous boundary
conditions, i.e.,{

a𝜃𝜃
(
𝜓𝜃i , v;𝜇0

)
= 0, ∀v ∈ Θh,0(Ω),

𝜓𝜃i (x) = 𝜗i(x), ∀x ∈ Γ𝜃,
∀𝜇0 ∈ .

We assume the availability of nested parameter sets S𝜃
N𝜃

=
{𝜇𝜃1 ∈ ,… , 𝜇𝜃

N𝜃
∈ },1 ≤ N𝜃 ≤ N𝜃

max, and associated nested Lagrange
RB spaces Θr,0

N𝜃
(Ω) = span

{
𝜙𝜃n, 1 ≤ n ≤ N𝜃

}
,1 ≤ N𝜃 ≤ N𝜃

max, where 𝜙𝜃n ∈
Θr,0

N𝜃
(Ω), 1 ≤ n ≤ N𝜃

max are mutually orthonormal RB basis functions with
respect to a particular norm using a Gram–Schmidt process. The proce-
dure to construct efficiently the sets S𝜃

N𝜃
and Θr,0

N𝜃
(Ω) is discussed in

(3.1.5).
For any 𝜇 ∈ , we find an approximation 𝜃r(𝜇) to 𝜃h(𝜇) in the form

𝜃h(𝜇) ≈ 𝜃r(𝜇) = 𝜃r,0(𝜇) + 𝜃h,p(𝜇), where 𝜃r,0(𝜇) =
N𝜃∑
n=1

𝛼𝜃n(𝜇)𝜙
𝜃
n, (19)

and 𝛼𝜃n(𝜇)’s are interpolation weights, called “reduced variables”. The
RB approximation 𝜃r,0(𝜇) to 𝜃h,0(𝜇) is optimally (in the sense of the
energy norm, see Céa Lemma) obtained by a standard Galerkin projec-
tion: for given 𝜇 ∈ , find 𝜃r,0(𝜇) that satisfies

a𝜃𝜃(𝜃r,0(𝜇), v1;𝜇) = f̂ 𝜃 (v1;𝜇),

= f 𝜃
(
v1;𝜇

)
− a𝜃𝜃

(
𝜃h,p(𝜇), v1;𝜇

)
∀v1 ∈ Θr,0

N𝜃
(Ω), 𝜇 ∈ .

(20)

This typically very small system of linear equations can be solved
on demand, for any parameter set of interest. The RB QoIs can then be
evaluated from the reduced solution as

Qr,𝜃
i (𝜇) = 𝓁𝜃i

(
𝜃r(𝜇)

)
, 1 ≤ i ≤ nQ. (21)

We note that systems (20) and (21) accept the very efficient offline-
online computational procedures [25,34] which include an expensive 𝜇-
independent Offline stage performed only once and many cheap Online
computations for any input parameter value 𝜇 ∈ . In particular, in the
Offline stage the affine terms {𝜓𝜃i , 1 ≤ i ≤ n𝜃,w} (18), the RB basis func-
tions {𝜙𝜃n,1 ≤ n ≤ N𝜃 ≤ N𝜃

max} (19) and all the parameter-independent
terms (in (20) and (21)) are computed and stored. In the Online stage,
for any given 𝜇, all the parameter-dependent functions (in (20) and (21))
are evaluated, the reduced system (39) is assembled and solved to find
the RB coefficients 𝛼𝜃n(𝜇), 1 ≤ n ≤ N𝜃 , and the RB QoIs are obtained
through the simple scalar product (21). The Offline cost depends on
 𝜃 and thus expensive, while the Online cost is completely indepen-
dent of  𝜃 . The detailed computation of these procedures are standard
in MOR community and hence will not be repeated here. An elaborated
description is referred to as [26,35].
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3.1.2. Reduced order model for the heat flux field
The principles underlying the construction of the heat flux surro-

gate are parallel to those employed for the construction of the tem-
perature surrogate [26,33]. We first recall that the “exact” FE flux field
qh(𝜇) = k(𝜇) · ∇𝜃h(𝜇) satisfies the equilibrium in the FE sense, namely, it
verifies

−∫Ωqh(𝜇) · ∇v1 dΩ + ∫Ωf (𝜇) · v1 dΩ + ∫Γh
h(𝜇) · v1 dΓ = 0, ∀v1 ∈ Θh,0(Ω).

(22)

We denote by h,Ad(Ω;𝜇) the space of fluxes satisfying the
parametrized equilibrium in the FE sense (22). The construction of the
flux surrogate relies on the separation of the FE flux field into two
parts:

qh(𝜇) = qh,0(𝜇) + qh,p(𝜇), ∀𝜇 ∈ . (23)

The first part qh,0(𝜇) belongs to the space h,0(Ω) of flux fields satisfying
the following homogeneous equilibrium condition

∫Ωqh,0(𝜇) · v1 dΩ = 0, ∀v1 ∈ Θh,0(Ω), 𝜇 ∈ , (24)

while the second part belongs to h,Ad(Ω; 𝜇) and therefore satisfies the
equation

−∫Ωqh,p(𝜇) · v1 dΩ + ∫Ωf (𝜇) · v1 dΩ + ∫Γh
h(𝜇) · v1 dΓ = 0, ∀v1 ∈ Θh,0(Ω).

(25)

Here, (23) is to be understood as follows: given a valid equilibrated
flux qh,p(𝜇), then the complementary part qh,0(𝜇) can be formally calcu-
lated from the knowledge of the exact FE flux qh(𝜇).

The flux field qh,p(𝜇) ∈ h,Ad(Ω;𝜇) will be explicitly defined as a
function of the parametrized heat source and prescribed flux, while the
complementary part qh,0(𝜇) will be approximated by its projection in a
reduced vector space.

Using a standard technique as described in section 3.2.2 of [26] and
with the assumption of affine forms for heat source f (𝜇) and prescribed
flux h(𝜇), the particular flux field qh,p(𝜇) can have the following affine
forms

qh,p(𝜇) =
ñq,p∑
i=1

𝛾̃
q,p
i (𝜇)qp

i , ∀𝜇 ∈ . (26)

We now introduce the nested parameter sets Sq
Nq ={

𝜇
q
1 ∈ ,… , 𝜇

q
Nq ∈ }

,1 ≤ Nq ≤ Nq
max, and associated nested Lagrange

RB spaces r,0
Nq (Ω) = span

{
𝜙

q
m, 1 ≤ m ≤ Nq} , 1 ≤ Nq ≤ Nq

max, where
𝜙

q
m ∈ r,0

Nq (Ω), 1 ≤ m ≤ Nq
max are mutually orthonormal RB basis func-

tions with respect to a particular norm using a Gram–Schmidt process.
Details on how to construct efficiently the sets Sq

Nq and r,0
Nq (Ω) are

discussed in (3.1.5).
As mentioned above, we construct the surrogate flux field q̂(𝜇)

as

qh(𝜇) ≈ q̂(𝜇) = qr,0(𝜇) + qh,p(𝜇), ∀𝜇 ∈ , where qr,0(𝜇) =
Nq∑
i=1

𝛼
q
i (𝜇)𝜙

q
i ,

(27)

where 𝛼q(𝜇)∈ ℝNq are (unknown) generalized coefficients to be
obtained by the projection.

The generalized coefficients are required to satisfy the optimum
property

q̂(𝜇) = arg min
q⋆∈r(Ω;𝜇)

‖‖‖q⋆ − qh(𝜇)‖‖‖k−1(𝜇)
, (28)

where the admissible space for reduced flux field is defined by
r(Ω; 𝜇) = {q⋆ ∈ (Ω) | q⋆ =

∑Nq

i=1 𝛼
⋆
i 𝜙

q
i + qh,p(𝜇), ∀𝛼⋆∈ ℝNq}; ‖ · ‖k−1(𝜇)

is the so-called energy norm for the flux fields and is defined in (3.1).

Using the constitutive relation (4), the optimization problem (28)
can be recast in the following variational form: find q̂(𝜇) ∈ r(Ω;𝜇) such
that

−∫Ω
q̂(𝜇) · k−1(𝜇) · q⋆ dΩ + ∫Ω∇𝜃

h(𝜇) · q⋆ dΩ = 0, ∀q⋆ ∈ r,0(Ω), (29)

where r,0(Ω) = {q⋆ ∈ (Ω) | q⋆ =
∑Nq

i=1 𝛼
⋆
i 𝜙

q
i , ∀𝛼

⋆∈ ℝNq}.
Now, substituting (27) and (19) into (29) and noting (24), we

obtain the variational form that we will use to compute the flux field
qr,0(𝜇):

∫Ωqr,0(𝜇) · k−1(𝜇) · q⋆ dΩ = ∫Ω∇𝜃
h,p(𝜇) · q⋆ dΩ

− ∫Ωqh,p(𝜇) · k−1(𝜇) · q⋆ dΩ, ∀q⋆ ∈ r,0(Ω).

(30)

From (18) and (26), and assuming that k−1(𝜇) has the affine
decomposition form, (30) also accepts the very efficient offline-online
computational procedures which include an expensive 𝜇-independent
Offline stage performed only once and many cheap Online compu-
tations for any input parameter value 𝜇 ∈ . In particular, in the
Offline stage the affine terms qp

i ,1 ≤ i ≤ ñq,p (26), the RB basis func-
tions {𝜙q

n,1 ≤ n ≤ Nq ≤ Nq
max} (27) and all the parameter-independent

terms (in (30)) are computed and stored. In the Online stage, for
any given 𝜇, all the parameter-dependent functions (in (30)) are eval-
uated and (30) is assembled and solved to find the RB coefficients
𝛼

q
n(𝜇), 1 ≤ n ≤ Nq. The system matrix is very small, with a size (Nq × Nq)

completely independent of the FE space dimension  q. Again, the
detailed computation of these procedures is standard and hence is not
repeated here. Readers are referred to [26,35] for an elaborated descrip-
tion.

3.1.3. Constitutive relation error for the heat diffusion equation
We recall briefly here the CRE equality for heat equation, and refer

to [26,33] for its full presentation.

Proposition 3.1. Let e𝜃 (𝜇) = 𝜃h(𝜇) − 𝜃r(𝜇) and eq(𝜇) = qh(𝜇) − q̂(𝜇) be
the RB errors for the temperature and flux fields, respectively; ‖‖q⋆‖‖k−1 (𝜇) =(∫Ωq⋆ · k−1(𝜇) · q⋆ dΩ

)1∕2 be the energy norm associated to an arbitrary
flux field q⋆ ∈ (Ω) and ‖v‖k(𝜇) =

(∫Ω∇v · k(𝜇) · ∇v dΩ
)1∕2 be the energy

norm associated to an arbitrary temperature field v ∈ Θh,0(Ω).
Then, the square of the distance ΔCRE

𝜃
(𝜇) between the RB flux field

qr(𝜇) ∈ (Ω) and the surrogate flux field q̂(𝜇) ∈ h,Ad(Ω; 𝜇), measured in
energy norm, will be equal exactly to the sum of square of energy norms of
the RB errors of the temperature and flux fields as follows

ΔCRE
𝜃

(𝜇)2 ≔ ‖‖qr(𝜇) − q̂(𝜇)‖‖2
k−1 (𝜇) = ‖‖e𝜃(𝜇)‖‖2

k(𝜇) + ‖eq(𝜇)‖2
k−1(𝜇)

. (31)

The proof is standard and can be found in Appendix A of [26]
(Note that qr(𝜇) = k(𝜇) · ∇𝜃r(𝜇) in (31) above.). It is important to under-
stand from (31) that the RB errors ‖‖e𝜃(𝜇)‖‖k(𝜇) and ‖eq(𝜇)‖k−1 (𝜇) are indi-
vidually uncomputable, but the sum of their squares is computable
in an a posteriori manner. It was shown in Ref. [26] that the com-
putation of ΔCRE

𝜃
(𝜇) is very efficient which can be decomposed into

Offline–Online computational procedures. The key point to note is that
the cost to compute ΔCRE

𝜃
(𝜇) (in the Online stage) is completely inde-

pendent of  𝜃 ,  q, and is only dependent on N𝜃 , Nq. The effectivi-
ties of the CRE bound for both temperature and flux fields are defined
as

𝜂CRE
𝜃

(𝜇) =
ΔCRE
𝜃

(𝜇)‖𝜃h(𝜇) − 𝜃r(𝜇)‖k(𝜇)
, and 𝜂CRE

q (𝜇) =
ΔCRE
𝜃

(𝜇)‖qh(𝜇) − q̂(𝜇)‖k−1 (𝜇)
,

(32)

respectively.
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3.1.4. Goal-oriented error bound for the heat diffusion equation
Duality technique is a standard tool to bound engineering QoIs for

linear problems [36,37]. Readers that are familiar with this topic should
only scan through this section to identify the notations used throughout
the remainder of this paper.

For each one of the QoIs, we define the FE dual (or adjoint) problem

a𝜃𝜃
(
𝜁h,0
i (𝜇), v1;𝜇

)
= 𝓁𝜃i

(
v1;𝜇

)
, ∀v1 ∈ Θh,0(Ω), 1 ≤ i ≤ nQ , (33)

where 𝜁h,0
i (𝜇) ∈ Θh,0 is the FE dual temperature field corresponding to

the output functional 𝓁𝜃i , which is required to satisfy homogeneous
Dirichlet boundary conditions.

We solve this problem approximately by the projection-based ROM
obtained by the reduced Galerkin formulation: find 𝜁 r,0

i (𝜇) ∈ Θh,0(Ω)
such that

a𝜃𝜃
(
𝜁

r,0
i (𝜇), v1;𝜇

)
= 𝓁𝜃i

(
v1;𝜇

)
, ∀v1 ∈ Θr,0

𝜁 ,i (Ω), 1 ≤ i ≤ nQ, (34)

where Θr,0
𝜁 ,i (Ω) ⊂ Θh,0(Ω) is the reduced basis space for the dual tem-

perature field associated with the output functional 𝓁𝜃i ; and generally
Θr,0
𝜁 ,i (Ω) ≠ Θr,0

N𝜃
(Ω). For consistency, for the i − th QoI, we also define the

sets of RB basis functions {𝜙𝜁,in , 1 ≤ n ≤ N𝜁 ,i} for dual temperature and
{𝜙𝜉,im , 1 ≤ m ≤ N𝜉,i,1 ≤ i ≤ nQ} for dual fluxes, respectively.

Using the classical technique as described in Refs. [26,36], we
obtain the following inequality

Qr,𝜃,low
i (𝜇) ≤ Qh,𝜃

i (𝜇) ≤ Qr,𝜃,up
i (𝜇), (35)

where

⎧⎪⎨⎪⎩
Qr,𝜃,low

i (𝜇) = Qr,𝜃
i (𝜇) + R𝜃

(
𝜁 r,0
i (𝜇); 𝜇

)
− ΔCRE

𝜃
(𝜇)ΔCRE

𝜁 ,i (𝜇)

Qr,𝜃,up
i (𝜇) = Qr,𝜃

i (𝜇) + R𝜃
(
𝜁 r,0
i (𝜇); 𝜇

)
+ ΔCRE

𝜃
(𝜇)ΔCRE

𝜁 ,i (𝜇)
, 1 ≤ i ≤ nQ.

In the above expression, R𝜃 ∶ Θh,0(Ω) × → ℝ is the residual form
of (20) defined as

R𝜃(v1;𝜇) = f̂ 𝜃(v1;𝜇) − a𝜃𝜃(𝜃r,0(𝜇), v1;𝜇), ∀v1 ∈ Θh,0(Ω), ∀𝜇 ∈ . (36)

The inequality (35) is fundamental to our Greedy sampling strategy.
It provides an interval in which the FE output, which is not computable,
is guaranteed to be found. We call this interval “uncertainty gap”, and
our aim is to control and minimize its length through our Greedy sam-
pling algorithm. In fact, we use a relative measure of this gap defined
as

gapi(𝜇) =
|||Qr,𝜃,up

i (𝜇) − Qr,𝜃,low
i (𝜇)|||

1∕2
(|Qr,𝜃,up

i (𝜇)| + |Qr,𝜃,low
i (𝜇)|) , ∀𝜇 ∈ , 1 ≤ i ≤ nQ,

(37)

for the i-th QoI.

3.1.5. Goal-oriented greedy sampling for the heat equation
Several authors have shown the advantage of devising goal-oriented

sampling strategies to construct the projection spaces used in reduced
order modelling [38–40]. Instead of aiming at minimizing the maxi-
mum over the parameter domain of an arbitrary measure of the error,
one aims at minimizing the error in the quantity or quantities of inter-
est. This type of approach has been shown to lead to faster convergence
rates of the greedy algorithm in terms of input-output maps.

In this study, (37) shows that the output accuracy is controlled by
the primal/dual temperatures and fluxes ROMs through the CRE (37).
Therefore, it is natural to set the minimization of the maximum uncer-
tainty gap (35) over the parameter domain as our target for the con-
struction of the projection spaces.

Of course, such a minimization problem is not directly solvable, and
we will make use of a greedy algorithm, as proposed in the original RB
method. The method proceeds iteratively by assuming the existence of
projection subspaces for primal/dual temperature and flux and perform-
ing a rank-one correction in such a way that the maximum of the uncer-
tainty gap over the parameter domain is approximately minimized. The
algorithm can be stopped whenever the uncertainty gap is sufficiently
low over the entire parameter domain.

The rank-one update is performed as follows. First, we identify
the point of the parameter domain where the uncertainty gap is at
its largest. Then, we enrich one, and only one of the bases, tempera-
ture/flux of the primal or temperature/flux of one of the adjoint prob-
lems, by its corresponding FE solution (after orthonormalization) to the
corresponding existing reduced basis. The choice of the field to enrich
is simply based on testing which one of the enrichments would result
in largest decrease in the gap at this particular point of the parame-
ter domain. A more detailed full algorithm description is referred to as
section 5.2 in Ref. [26].

3.2. Two-field reduced basis approximations for the elastostatic equation

3.2.1. Reduced order model for the displacement field
Similar to the heat equation, we use a global lifting technique to

handle general nonhomogeneous Dirichlet boundary condition problem

uh(𝜇) = uh,0(𝜇) + uh,p(𝜇), ∀𝜇 ∈ . (38)

Here, uh,0(𝜇) ∈  h,0(Ω), which means that uh,0(𝜇) vanishes on Γu for
any 𝜇 ∈ , while uh,p(𝜇) ∈  h(Ω) satisfies exactly the nonhomogeneous
Dirichlet boundary conditions. This equation is to be understood as fol-
lows: given a valid lifting uh,p(𝜇), the complementary part uh,0(𝜇) can
be formally calculated from the knowledge of uh(𝜇). We approximate
uh,0(𝜇) by its projection in a reduced vector space, while uh,p(𝜇) is an
explicit function of the parameters. Again, the computation of uh,p(𝜇) is
standard in literature, and thus is not repeated here. Readers can refer
to [26] (section 3.1.2) or [33] for the detailed computation.

Using a global lifting technique and with the assumption of the
affine form for the prescribed displacement, uh,p(𝜇) can be defined by
the following expansion

uh,p(𝜇) =
nu,w∑
i=1

𝛾
u,w
i (𝜇)𝜓u

i , ∀𝜇 ∈  (39)

where 𝜓u
i is a set of nu,w of displacement fields that can be obtained

by solving nu,w standard FE problems with nonhomogeneous boundary
conditions (see section 3.1.2 in Ref. [26]).

We assume the availability of nested parameter sets Su
Nu ={

𝜇u
1 ∈ ,… , 𝜇u

Nu ∈ , 1 ≤ Nu ≤ Nu
max

}
, and associated nested Lagrange

RB spaces  r,0
Nu (Ω) = span

{
𝜙u

n,1 ≤ n ≤ Nu, 1 ≤ Nu ≤ Nu
max

}
, where 𝜙u

n ∈
 r,0

Nu (Ω), 1 ≤ n ≤ Nu
max are mutually orthonormal RB basis functions with

respect to a particular norm using a Gram–Schmidt process. The proce-
dure to construct efficiently the sets Su

Nu and  r,0
Nu (Ω) is discussed in

(3.2.5).
For any 𝜇 ∈ , we find an approximation ur(𝜇) of uh(𝜇) in the form

uh(𝜇) ≈ ur(𝜇) = ur,0(𝜇) + uh,p(𝜇), where ur,0(𝜇) =
Nu∑
n=1

𝛼u
n(𝜇)𝜙

u
n, (40)

and 𝛼u
n(𝜇)’s are interpolation weights, called “reduced variables”. The

RB approximation ur,0(𝜇) to uh,0(𝜇) is optimally (in the sense of the
energy norm) obtained by a standard Galerkin projection: given 𝜇 ∈ ,
find ur,0(𝜇) such that

auu(ur,0(𝜇), v2;𝜇) = f̂ u(v2;𝜇),

= f u (
v2;𝜇

)
− auu

(
uh,p(𝜇), v2;𝜇

)
+ au𝜃 (𝜃r(𝜇), v2;𝜇

)
∀v2 ∈  r,0

Nu (Ω), 𝜇 ∈ . (41)
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The key point to note here is that we use the RB temperature field 𝜃r(𝜇)
in (41) rather than the original FE temperature field 𝜃h(𝜇) in (15). If we
use 𝜃h(𝜇) in (41), its ROM efficiency would be lost as we need to solve
a full FE heat problem (14) for every input parameter 𝜇.

This typically very small system of linear equations can be solved
on demand, for any parameter set of interest. The RB QoIs can then be
evaluated from the reduced solution as

Qr,u
i (𝜇) = 𝓁u

i
(
ur(𝜇)

)
, 1 ≤ i ≤ nQ. (42)

Offline-Online computational procedures for the reduced variables
In this subsection, we recall briefly the usual offline-online computa-
tional procedures for the Galerkin ROM, which is necessary in order to
fully exploit the dimensional reduction of problem [25,34,35,41].

Using (40) and v = 𝜙u
n,1 ≤ n ≤ Nu, then invoking the affine decom-

position (9), (10) and using the expanded expression of the RB temper-
ature field 𝜃r(𝜇) =

∑N𝜃
i=1 𝛼

𝜃
i (𝜇)𝜙

𝜃
i +

∑n𝜃,w
i=1 𝛾𝜃,wi (𝜇)𝜓𝜃i from (18), (19), Eqs.

(41) and (42) can be expressed explicitly as

Nu∑
m=1

(Quu∑
q=1

𝜚uu
q (𝜇)auu

q
(
𝝓u

m,𝝓
u
n
))

𝛼u
m(𝜇)

=
Qu∑
q=1

𝜚u
q(𝜇)f

u
q
(
𝝓u

n
)
−

Quu∑
q=1

nu,w∑
i=1

𝜚uu
q (𝜇)𝛾u,w

i (𝜇)auu
q

(
𝝍u

i ,𝝓
u
n

)

+
N𝜃∑
i=1

𝛼𝜃i (𝜇)a
u𝜽 (𝝓𝜽i ,𝝓u

n
)
+

n𝜃,w∑
i=1

𝛾𝜃,wi (𝜇)au𝜽 (𝝍𝜽i ,𝝓u
n
)
, 1 ≤ n ≤ Nu,

(43)

and

Qr,u
i (𝜇) =

Nu∑
n=1

Q𝓁u
i∑

q=1
𝜚
𝓁u

i
q (𝜇)𝛼u

n (𝜇)𝓵
u
i,q

(
𝝓u

n
)

+
nu,w∑
j=1

Q𝓁u
i∑

q=1
𝛾

u,w
j (𝜇)𝜚

𝓁u
i

q (𝜇)𝓵u
i,q

(
𝝍u

j

)
, 1 ≤ i ≤ nQ. (44)

From the above decompositions, the computational procedures are
now clear: an expensive 𝜇-independent Offline stage performed only
once and many cheap Online computations for any input parameter
value 𝜇 ∈ . In the Offline stage, the terms {𝜓𝜃i , 1 ≤ i ≤ n𝜃,w} (18),
{𝜓u

i ,1 ≤ i ≤ nu,w} (39), the RB basis functions
{
𝜙𝜃n,1 ≤ n ≤ N𝜃

max
}

(19),{
𝜙u

n, 1 ≤ n ≤ Nu
max

}
(40) and all the parameter-independent terms (bold

typeface in (43), (44)) will be computed and stored. In the Online stage,
for any given 𝜇, all the parameter-dependent functions (normal typeface
in (43), (44)) are evaluated, the reduced system (43) is assembled and
solved to find the RB coefficients 𝛼u

n(𝜇), 1 ≤ n ≤ Nu and the RB QoI are
obtained through the simple scalar product (44). The Offline cost will
be expensive as it depends on  u (the dimension of the FE space).
The Online operation count is O

(
QuuNu2

)
to assemble the system and

O
(

Nu3
)

to invert the reduced operator in (43). The RB QOI is then eval-
uated with the cost of O (Nu) from (44). Therefore, the Online operation
count to evaluate 𝜇 → Qr,u

i (𝜇), 1 ≤ i ≤ nQ is completely independent of
 u and  𝜃 .

3.2.2. Reduced order model for the stress field
We first recall that the “exact” FE stress field 𝜎h(𝜇) ≔ D(𝜇) ∶

𝜖(uh(𝜇)) − D(𝜇) ∶ 𝜖0(𝜃h(𝜇)), satisfying the equilibrium in the FE sense,
i.e.,

− ∫Ω𝜎
h(𝜇) ∶ 𝜖(v2) dΩ + ∫Ωb(𝜇) · v2 dΩ + ∫Γt

t(𝜇) · v2 dΓ = 0,

∀v2 ∈  h,0(Ω). (45)

The space of stresses satisfying the parametrized equilibrium (45)
in the FE sense is denoted by h,Ad(Ω; 𝜇). The construction of the
stress surrogate relies on the separation of the FE stress field into two
parts:

𝜎h(𝜇) = 𝜎h,0(𝜇) + 𝜎h,p(𝜇), ∀𝜇 ∈ . (46)

The first part 𝜎h,0(𝜇) belongs to the space h,0(Ω) of stress fields satis-
fying the following homogeneous equilibrium conditions

∫Ω𝜎
h,0(𝜇) ∶ 𝜖(v2) dΩ = 0, ∀v2 ∈  h,0(Ω), 𝜇 ∈ , (47)

while the second part 𝜎h,p(𝜇) belongs to h,Ad(Ω; 𝜇) and therefore satis-
fies the equation

−∫Ω𝜎
h,p(𝜇) ∶ 𝜖(v2) dΩ + ∫Ωb(𝜇) · v2 dΩ + ∫Γt

t(𝜇) · v2 dΓ = 0,

∀v2 ∈  h,0(Ω). (48)

Here, (46) is to be understood as follows: for given a valid equi-
librated stress 𝜎h,p(𝜇), the complementary part 𝜎h,0(𝜇) can be for-
mally calculated from the knowledge of the exact FE stress 𝜎h(𝜇). The
stress field 𝜎h,p(𝜇)∈ h,Ad(Ω; 𝜇) is explicitly defined as a function of the
parametrized body forces and surface tractions, while the complemen-
tary part 𝜎h,0(𝜇) is approximated by its projection in a reduced vector
space. Using a standard technique as described in section 3.2.2 of [26]
and with the assumption of affine forms for body force b(𝜇) and surface
traction t(𝜇), the particular stress field 𝜎h,p(𝜇) can have the following
affine form

𝜎h,p(𝜇) =
ñ𝜎,p∑
i=1

𝛾̃
𝜎,p
i (𝜇)𝜎p

i , ∀𝜇 ∈  (49)

where 𝛾̃𝜎,pi (𝜇) is the same with (38) in Ref. [26].
We introduce the nested parameter sets S𝜎N𝜎 ={

𝜇𝜎1 ∈ ,… , 𝜇𝜎N𝜎 ∈ }
, 1 ≤ N𝜎 ≤ N𝜎

max, and associated nested Lagrange
RB spaces r,0

N𝜎 (Ω) = span
{
𝜙𝜎m,1 ≤ m ≤ N𝜎

}
, 1 ≤ N𝜎 ≤ N𝜎

max, where
𝜙𝜎m ∈ r,0

N𝜎 (Ω), 1 ≤ m ≤ N𝜎
max are mutually orthonormal RB basis func-

tions with respect to a particular norm using a Gram–Schmidt process.
Details on how to construct efficiently the sets S𝜎N𝜎 and r,0

N𝜎 (Ω) are
discussed in (3.2.5).

We first recall the definition of the RB stress field which is post-
processed from the RB displacement and temperature fields 𝜎r(𝜇) ≔
D(𝜇) ∶ 𝜖(ur(𝜇)) − D(𝜇) ∶ 𝜖0(𝜃r(𝜇)). To fully exploit the ROM efficacy, we
propose to construct the surrogate stress field 𝜎(𝜇) as

𝜎r(𝜇) ≈ 𝜎(𝜇) = 𝜎r,0(𝜇) + 𝜎h,p(𝜇), ∀𝜇 ∈ , where 𝜎r,0(𝜇) =
N𝜎∑
i=1

𝛼𝜎i (𝜇)𝜙
𝜎
i ,

(50)

where 𝛼𝜎i (𝜇) ∈ ℝN𝜎 are (unknown) generalized coefficients to be
obtained by the projection.

Notice that this construction is slightly different from the original
one proposed in Refs. [26,33] with 𝜎h(𝜇) ≈ 𝜎(𝜇). The reason for this
modification is that the computation of 𝜎h(𝜇) in this work includes
additionally the term 𝜃h(𝜇), thus if we use 𝜎h(𝜇) ≈ 𝜎(𝜇), the online
computation of 𝜎(𝜇) would invoke 𝜃h(𝜇) for every input 𝜇. In other
words, in this case, the online computation cost would still depend on
 𝜃 and hence is expensive. This will be clear in the following deriva-
tion.

The generalized coefficients are required to satisfy the optimum
property

𝜎(𝜇) = arg min
𝜎⋆∈r(Ω;𝜇)

‖‖𝜎⋆ − 𝜎r(𝜇)‖‖C(𝜇), (51)

where the admissible space for reduced stress field is defined by
r(Ω;𝜇) = {𝜎⋆ ∈ (Ω) | 𝜎⋆ =

∑N𝜎
i=1 𝛼

⋆
i 𝜙

𝜎
i + 𝜎h,p(𝜇), ∀𝛼⋆∈ ℝN𝜎 }; ‖ · ‖C(𝜇)

is the so-called energy norm for the stress fields as defined in
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Proposition 3.2.
Using the constitutive relation (5), the optimization problem (51)

can be recast in the following variational form: find 𝜎(𝜇) ∈ r(Ω; 𝜇) such
that

− ∫Ω𝜎(𝜇) ∶ C(𝜇) ∶ 𝜎⋆ dΩ + ∫Ω𝜖
(
ur(𝜇)

)
∶ 𝜎⋆ dΩ

− ∫Ω𝜖0
(
𝜃r(𝜇)

)
∶ 𝜎⋆ dΩ = 0, ∀𝜎⋆ ∈ r,0(Ω), (52)

where r,0(Ω) = {𝜎⋆ ∈ (Ω) | 𝜎⋆ =
∑N𝜎

i=1 𝛼
⋆
i 𝜙

𝜎
i ,∀𝛼

⋆∈ ℝN𝜎 }. Now, substi-
tuting (50) and (40) into (52) and noting (47), we obtain the following
variational form to compute the stress field 𝜎r,0(𝜇):

(53)

Offline-Online computational procedures for the dual ROM Thanks
to the affine properties of uh,p(𝜇) eq. (39) and 𝜎h,p(𝜇) Eq. (49), we see
that Eq. (53) can also be decomposed into Offline-Online computational
procedures if the operator C(𝜇) is also affine, which we will assume:

C(x, 𝜇) =
nC∑
i=1

𝛾C
i (𝜇)Ci(x), ∀𝜇 ∈ , x ∈ Ω. (54)

Invoking (39), (49), (54) and the expanded expression of the RB
temperature field 𝜃r(𝜇) =

∑N𝜃
i=1 𝛼

𝜃
i (𝜇)𝜙

𝜃
i +

∑n𝜃,w
i=1 𝛾𝜃,wi (𝜇)𝜓𝜃i , Eq. (53) can

then be written as

N𝜎∑
i=1

nC∑
k=1

𝛾C
k (𝜇)

(
∫𝛀𝝓

𝝈
i ∶ Ck ∶ 𝝓𝝈j d𝛀

)
𝛼𝜎i (𝜇)

=
nu,w∑
k=1

𝛾u,w
k (𝜇)

(
∫𝛀𝝐(𝝍

u
k) ∶ 𝝓

𝝈
j d𝛀

)
−

N𝜃∑
i=1

𝛼𝜃i (𝜇)∫𝛀
𝝐0

(
𝝓𝜽i

)
∶ 𝝓𝝈j d𝛀

−
n𝜃,w∑
i=1

𝛾
𝜃,w
i (𝜇)∫𝛀

𝝐0
(
𝝍𝜽i

)
∶ 𝝓𝝈j d𝛀 −

ñp∑
k=1

nC∑
l=1

𝛾̃
p
k (𝜇)𝛾

C
l (𝜇)

×
(
∫𝛀𝝈

𝐩
k ∶ Cl ∶ 𝝓𝝈j d𝛀

)
, 1 ≤ j ≤ N𝜎 . (55)

From the above decomposition, the computational procedures are
now clear: an expensive 𝜇-independent Offline stage performed only
once and many cheap Online computations for any input parame-
ter value 𝜇 ∈ . In particular, in the Offline stage the affine terms
𝜎

p
i ,1 ≤ i ≤ ñ𝜎,p (49), the RB basis functions {𝜙𝜎n , 1 ≤ n ≤ N𝜎 ≤ N𝜎

max}
(50) and all the parameter-independent terms (bold typeface in (55)) will
be computed and stored. In the Online stage, for any given 𝜇, all the
parameter-dependent functions (normal typeface in (55)) are evaluated,
the reduced system (55) is assembled and solved to find the RB coef-
ficients 𝛼𝜎n (𝜇), 1 ≤ n ≤ N𝜎 . The system matrix is very small, with a size
(N𝜎 × N𝜎 ) completely independent of the FE space dimension  𝜎 (Here,
 𝜎 denotes the dimension of the FE stress field.). The Online opera-
tion count is O

(
nCN𝜎2) to assemble the system and O

(
N𝜎3) to invert

the matrix in (55). Therefore, the Online operation count to evaluate
𝜇 → 𝛼𝜎(𝜇) is also independent of  u and  𝜃 .

3.2.3. Constitutive relation error for the elasticity
In this section, we derive a new CRE approximation for the elasticity

equation by extending the technique developed originally in Ref. [26]
as follows.

Proposition 3.2. Let e𝜃(𝜇) = 𝜃h(𝜇) − 𝜃r(𝜇), eu(𝜇) = uh(𝜇) − ur(𝜇) and
e𝜎(𝜇) = 𝜎h(𝜇) − 𝜎(𝜇) be the RB errors for the temperature, displacement
and stress fields, respectively. We consider the energy norms ‖𝜃⋆‖D(𝜇) =(∫Ω𝜖0(𝜃⋆) ∶ D(𝜇) ∶ 𝜖0(𝜃⋆)dΩ

)1∕2 for a temperature field 𝜃⋆ ∈ Θh,0(Ω),

‖‖u⋆‖‖D(𝜇) =
(∫Ω𝜖(u⋆) ∶ D(𝜇) ∶ 𝜖(u⋆)dΩ

)1∕2 for a displacement field u⋆ ∈

 h,0(Ω), and ‖‖𝜎⋆‖‖C(𝜇) =
(∫Ω𝜎⋆ ∶ C(𝜇) ∶ 𝜎⋆ dΩ

)1∕2 for a stress field 𝜎⋆ ∈
(Ω). Then, by controlling appropriately the term e𝜃(𝜇), we can obtain the
CRE estimator

ΔCRE
u (𝜇)2 ≔ ‖‖𝜎r(𝜇) − 𝜎(𝜇)‖‖2

C(𝜇) ≈ ‖‖eu(𝜇)‖‖2
D(𝜇) + ‖‖e𝜎(𝜇)‖‖2

C(𝜇) . (56)

Proof. We sketch the proof as follows. By substituting the
constitutive relation expressions for 𝜎h(𝜇) and 𝜎r(𝜇) from (5)
into ΔCRE

u (𝜇) and after some algebraic manipulations, we obtain

ΔCRE
u (𝜇)2 = ‖𝜎r(𝜇) − 𝜎(𝜇)‖2

C(𝜇) = ‖𝜎r(𝜇) − 𝜎h(𝜇) + 𝜎h(𝜇) − 𝜎(𝜇)‖2
C(𝜇)

= ‖−D(𝜇) ∶ 𝜖(eu(𝜇)) + D(𝜇) ∶ 𝜖0(e𝜃(𝜇)) + e𝜎(𝜇)‖2
C(𝜇)

= ‖eu(𝜇)‖2
D(𝜇) + ‖e𝜎(𝜇)‖2

C(𝜇) − 2∫Ω𝜖(eu(𝜇)) ∶ e𝜎 (𝜇) dΩ

+ ‖e𝜃(𝜇)‖2
D(𝜇) − 2∫Ω𝜖0(e𝜃(𝜇)) ∶ D(𝜇) ∶ 𝜖(eu(𝜇)) dΩ

+ 2∫Ω𝜖0(e𝜃 (𝜇)) ∶ e𝜎(𝜇) dΩ. (57)

The above expression can be rewritten as

ΔCRE
u (𝜇)2 = ‖‖eu(𝜇)‖‖2

D(𝜇) + ‖‖e𝜎 (𝜇)‖‖2
C(𝜇) + T + S, (58)

where

⎧⎪⎪⎨⎪⎪⎩

T = −2∫Ω𝜖
(
eu(𝜇)

)
∶ e𝜎 (𝜇)dΩ

S = ‖‖e𝜃(𝜇)‖‖2
D(𝜇) − 2∫Ω𝜖0

(
e𝜃(𝜇)

)
∶ D(𝜇) ∶ 𝜖

(
eu(𝜇)

)
dΩ

+2∫Ω𝜖0
(
e𝜃(𝜇)

)
∶ e𝜎(𝜇)dΩ.

(59)

We observe that the term T = 0 due to (47) as eu(𝜇) = uh,0(𝜇) −
ur,0(𝜇) ∈  h,0(Ω) and e𝜎(𝜇) = 𝜎h,0(𝜇) − 𝜎r,0(𝜇)∈ h,0(Ω) (see for exam-
ples [26,33]). The term S depends on e𝜃(𝜇) whose magnitude can
be completely controlled by its a posteriori CRE upper bound, i.e.,‖e𝜃(𝜇)‖k(𝜇) ≤ ΔCRE

𝜃
(𝜇), ∀𝜇 ∈  (31). Hence, we can control appropriately

the magnitude of term S (through e𝜃(𝜇) or indirectly through ΔCRE
𝜃

(𝜇))
such that

S
(
e𝜃(𝜇)

)
≪ ‖‖eu(𝜇)‖‖2

D(𝜇) + ‖‖e𝜎(𝜇)‖‖2
C(𝜇) . (60)

From the above observations, the terms T and S can be eliminated
from (58) which concludes the proof. □

Similar to the computation of ΔCRE
𝜃

(𝜇) in (3.1.3), the computation
of ΔCRE

u (𝜇) is also very efficient with completely decomposed Offline-
Online procedures. The technique, which is very similar to the one pre-
sented in Appendix B of [26], is detailed in Appendix A. The key point
to note is that the cost to compute ΔCRE

u (𝜇) (in the online stage) is com-
pletely independent of  u,  𝜎 , and  𝜃 . It only depends on N𝜃 , Nu,
and N𝜎 . We define the effectivities of CRE bound for both displacement
and stress fields as

𝜂CRE
u (𝜇) = ΔCRE(𝜇)‖‖uh(𝜇) − ur(𝜇)‖‖D(𝜇)

, and 𝜂CRE
𝜎 (𝜇) = ΔCRE(𝜇)‖‖𝜎h(𝜇) − 𝜎r(𝜇)‖‖C(𝜇)

,

(61)

respectively.
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3.2.4. Goal-oriented error bound approximations for the elasticity equation
Similar to section 3.1.4, duality technique is employed to

bound engineering QoIs. We first pursue this approach to derive
the goal-oriented error approximation for the elasticity equa-
tion.

For each one of the QoIs, we define the FE dual (or adjoint) problem

auu
(

zh,0
i (𝜇), v2;𝜇

)
= 𝓁u

i
(
v2;𝜇

)
, ∀v2 ∈  h,0(Ω), 1 ≤ i ≤ nQ, (62)

where zh,0
i (𝜇) ∈  h,0, 1 ≤ i ≤ nQ is the FE dual displacement field corre-

sponding to the output functional 𝓁u
i , which is required to satisfy homo-

geneous Dirichlet boundary conditions.
We solve this problem approximately by the projection-based ROM

obtained by the reduced Galerkin formulation: find zr,0
i (𝜇) ∈  h,0(Ω)

such that

auu
(

zr,0
i (𝜇), v2;𝜇

)
= 𝓁u

i
(
v2;𝜇

)
, ∀v2 ∈  r,0

z,i (Ω), 1 ≤ i ≤ nQ, (63)

where  r,0
z,i (Ω) ⊂  h,0(Ω) is the reduced basis space for the dual dis-

placement field associated with the output functional 𝓁u
i ; and generally

 r,0
z,i (Ω) ≠  r,0

Nu (Ω), 1 ≤ i ≤ nQ. For consistency, we also define the sets
of RB basis functions for dual displacements {𝜙z,i

n , 1 ≤ n ≤ Nz,i}, and that
for dual stresses {𝜙𝜎,im , 1 ≤ m ≤ N𝜎,i}, 1 ≤ i ≤ nQ for the i-th QoI, respec-
tively.

Using the classical technique in Ref. [36], we obtain the following
expression

Qh,u
i (𝜇) − Qr,u

i (𝜇) = 𝓁u
i (eu(𝜇)) = auu

(
zh,0

i (𝜇), eu(𝜇); 𝜇
)
,

= auu (ez,i(𝜇), eu(𝜇); 𝜇
)

+ auu
(

zr,0
i (𝜇), eu(𝜇); 𝜇

)
, 1 ≤ i ≤ nQ

(64)

where ez,i(𝜇) ≔ zh
i (𝜇) − zr

i (𝜇) is the true error for the dual variables.
Applying Cauchy–Schwarz inequality to separate the errors in pri-

mal and dual problems, and substituting the CRE as a computable
bound for exact errors in energy norm, we obtain

Qr,u,low
i (𝜇) ≤ Qh,u

i (𝜇) ≤ Qr,u,up
i (𝜇), (65)

where

⎧⎪⎪⎨⎪⎪⎩

Qr,u,low
i (𝜇) = Qr,u

i (𝜇) − ΔCRE
u (𝜇)ΔCRE

z,i (𝜇)

− ΔCRE
u (𝜇) ‖zr,0

i (𝜇)‖D(𝜇)

Qr,u,up
i (𝜇) = Qr,u

i (𝜇) + ΔCRE
u (𝜇)ΔCRE

z,i (𝜇)

+ ΔCRE
u (𝜇) ‖zr,0

i (𝜇)‖D(𝜇)

, 1 ≤ i ≤ nQ.

We notice from this expression that the “uncertainty gap”: gapi(𝜇) =
Qr,u,up

i (𝜇) − Qr,u,low
i (𝜇) = O

(
ΔCRE

u (𝜇)
(
ΔCRE

z,i (𝜇) + ‖zr,0
i (𝜇)‖D(𝜇)

))
≈

O
(
cΔCRE

u (𝜇)
)
, where c is an arbitrary constant as usually

ΔCRE
z,i (𝜇) ≪ ‖zr,0

i (𝜇)‖D(𝜇). In other words, the uncertainty gap gapi(𝜇)
now depends linearly with ΔCRE

u (𝜇) rather than quadratic depen-
dence as in classical derivation [25,36,37,42–44] due to the ROM
approximation 𝜃h(𝜇) ≈ 𝜃r(𝜇) in f̂ u(v2; 𝜇) in (41).

Due to this reason, we follow the primal-only approach which is
simpler and also has linearly dependence of “uncertainty gap” on the
CRE estimator. Following classical and standard derivations such as in
Ref. [25], we can easily have|||Qh,u

i (𝜇) − Qr,u
i (𝜇)||| = |||𝓁u

i (eu(𝜇))
|||

≤ ‖𝓁u
i ‖( h,0(Ω))′ ‖eu(𝜇)‖D(𝜇)

≤ ‖𝓁u
i ‖( h,0(Ω))′Δ

CRE
u (𝜇), 1 ≤ i ≤ nQ,

(66)

where X′ denotes the dual space to X. From which, we obtain the fol-
lowing goal-oriented bounds

Fig. 1. Schematic representation of the computational homogenization framework for
composite materials. The heat conductive contrast and elastic contrast of the particulate
composite are parametrized.

Qr,u,low
i (𝜇) ≤ Qh,u

i (𝜇) ≤ Qr,u,up
i (𝜇), (67)

where
⎧⎪⎨⎪⎩

Qr,u,low
i (𝜇) = Qr,u

i (𝜇) − ‖𝓁u
i ‖( h,0(Ω))′Δ

CRE
u (𝜇)

Qr,u,up
i (𝜇) = Qr,u

i (𝜇) + ‖𝓁u
i ‖( h,0(Ω))′Δ

CRE
u (𝜇)

, 1 ≤ i ≤ nQ.

3.2.5. Two-field, CRE-based greedy sampling for the elasticity equation
Principle: As similar to the heat equation, with the available CRE

estimator (56), it is natural to set the minimization of the maxi-
mum CRE over the parameter domain as our target for the con-
struction of the projection subspaces. Again, this minimization prob-
lem is not directly solvable, and we will make use of a greedy algo-
rithm. This greedy algorithm is quite similar to the one presented in
section 3.1.5 or the one developed originally in Ref. [26]. In addi-
tion, as derived in Proposition 3.2, the CRE displacement error esti-
mator (ΔCRE

u (𝜇)) requires some proper control of the CRE temperature
error estimator (ΔCRE

𝜃
(𝜇)). For this purpose, we propose a new con-

trol procedure (so-called “procedure to select N𝜃”) within the greedy

Fig. 2. FE discretization of the parametrized SVE.
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algorithm. The main idea of this procedure is to choose adaptively
and automatically the RB dimension of the temperature field (N𝜃)
so that the CRE expression (56) is valid as this is crucial for this
approach.

The greedy algorithm proceeds iteratively by assuming the exis-
tence of projection subspaces for both displacement and stress
fields and performing a rank-one correction in such a way that
the maximum of the CRE over the parameter domain is approxi-
mately minimized. As the CRE is an approximated bound for both
RB displacement and stress errors, the algorithm can be stopped
whenever the CRE is sufficiently low over the entire parameter
domain.

The rank-one update is performed as follows. First, we iden-
tify the point of the parameter domain where the CRE is at its
largest. Then, a simple test on enrichment to identify which one
of the enrichments would result in the largest decrease in the CRE
at this particular parameter point will be performed. Finally, we
enrich either the displacement or the stress ROM by adding the
corresponding solution (after orthonormalization) to the correspond-
ing existing reduced basis. (For interested readers, the convergence
of greedy algorithm for reduced basis method was proved in Ref.
[45].)

Greedy algorithm: The two-field greedy sampling algorithm is pre-
sented in Algorithm 12

The input parameter 𝜖tol can be set either directly or through a max-
imum RB dimension Nu

max. A training sample Ξtrain ⊂  is a discrete set
representing a very fine sample of ntrain = |Ξtrain| points in the parame-
ter domain. And 𝜖CRE and Ξst are the parameters for the selection pro-
cedure selectNtheta. There are two sets of RB basis functions to
be built: the RB displacement set (Nu ) and the RB stress set (̃N𝜎 ).
The two-field greedy algorithm starts with arbitrarily chosen param-
eters 𝜇u

1, 𝜇
𝜎
1 ∈ Ξtrain to construct 1 = {𝜙u

1} and ̃1 = {𝜙𝜎1}, respec-
tively (lines 1–2). We now analyse each greedy iteration in detail as
follows.

We first perform the selection procedure to choose a proper N𝜃

based on the current sets Nu and ̃N𝜎 (line 4). We then compute the
CRE indicators ΔCRE,u

Nu ,N𝜎 ,N𝜃
(𝜇), ∀𝜇 ∈ Ξtrain based on the current RB dis-

placement and stress spaces, i.e.,  r,0
Nu (Ω) = span{𝜙u

n,1 ≤ n ≤ Nu} and
r,0

N𝜎 (Ω) = span{𝜙𝜎m,1 ≤ m ≤ N𝜎} (line 5). The “worst” parameter point
𝜇⋆ which induces the maximum error indicator thus can be found
(line 6). We then perform two following tests at 𝜇⋆. First, we com-
pute the CRE indicator ΔCRE

Nu+1,N𝜎 ,N𝜃
(𝜇⋆) after enriching the current

RB displacement space with 𝜙u(𝜇⋆). Second, we compute the CRE
indicator ΔCRE

Nu ,N𝜎+1,N𝜃
(𝜇⋆) after enriching the current RB stress space

with 𝜙𝜎(𝜇⋆) (line 7). These two CRE indicators are then compared
with each other, and the actual enrichment is decided based on this
comparison. If ΔCRE

Nu+1,N𝜎 ,N𝜃
(𝜇⋆) < ΔCRE

Nu ,N𝜎+1,N𝜃
(𝜇⋆), this implies that the

“testing” displacement enrichment helps to decrease the CRE error indi-
cator at 𝜇⋆ more than the “testing” stress enrichment does; and hence
“actual” displacement enrichment will be performed (lines 9–10). In
a completely opposite way, the fact ΔCRE

Nu+1,N𝜎 ,N𝜃
(𝜇⋆) ≥ ΔCRE

Nu ,N𝜎+1,N𝜃
(𝜇⋆)

implies that the “testing” stress enrichment reduces the CRE indi-
cator at 𝜇⋆ more than the “testing” displacement enrichment does;
and hence “actual” stress enrichment will be performed (lines 12–13).
The iteration of this algorithm continues until it satisfies the stop-
ping criterion (line 3). Lastly, we use two functions GSdisp and
GSstress to construct next RB basis functions for displacement and
stress fields using Gram–Schmidt orthogonalization process, respec-
tively. The function selectNtheta is discussed in next two para-

2 Note that in this algorithm, we will write ΔCRE
u (𝜇) as ΔCRE,u

Nu ,N𝜎 ,N𝜃
(𝜇) to reflect the fact

that this term depends on Nu, N𝜎 and N𝜃 – the number of RB basis functions for displace-
ment, stress and temperature fields, respectively.

graphs.

Algorithm 1 Two-field greedy sampling strategy.

INPUT: Ξtrain, 𝜖tol (or Nu
max); Ξst, 𝜖CRE

OUTPUT: Nu = {𝜙u
n,1 ≤ n ≤ Nu}; ̃N𝜎 = {𝜙𝜎m, 1 ≤ m ≤ N𝜎}

𝜙u
1 = uh,0(𝜇1)‖uh,0(𝜇1)‖D(𝜇0)

; 1 = {𝜙u
1}; Nu = 1;

𝜙𝜎1 = 𝜎h,0(𝜇1)‖𝜎h,0(𝜇1)‖C(𝜇0)
; ̃1 = {𝜙𝜎1}; N𝜎 = 1;

While ΔCRE,max > 𝜖tol do

• N𝜃 = selectNtheta
(
𝜀CRE,Ξst,Nu , ̃N𝜎

)
;

• Compute 𝛼𝜃(𝜇), 𝛼u(𝜇), 𝛼𝜎(𝜇) and ΔCRE,u
Nu ,N𝜎,N𝜃

(𝜇), ∀𝜇 ∈ Ξtrain;

• Set: ΔCRE,max = max
𝜇∈Ξtrain

ΔCRE,u
Nu ,N𝜎,N𝜃

(𝜇); 𝜇⋆ = arg max
𝜇∈Ξtrain

ΔCRE,u
Nu ,N𝜎,N𝜃

(𝜇);

• Test: compute ΔCRE,u
Nu ,N𝜎+1,N𝜃

(𝜇⋆) and ΔCRE,u
Nu+1,N𝜎 ,N𝜃

(𝜇⋆);

if ΔCRE,u
Nu+1,N𝜎 ,N𝜃

(𝜇⋆) < ΔCRE,u
Nu ,N𝜎+1,N𝜃

(𝜇⋆) then

𝜙u
Nu+1 = GSdisp

(
uh(𝜇⋆) − uh,p(𝜇⋆),Nu

)
;

Nu+1 ← Nu ∪ 𝜙u
Nu+1; Nu ← Nu + 1;

else
𝜙𝜎N𝜎+1 = GSstress

(
𝜎h(𝜇⋆) − 𝜎h,p(𝜇⋆), ̃N𝜎

)
;

̃N𝜎+1 ← ̃N𝜎 ∪ 𝜙𝜎N𝜎+1; N𝜎 ← N𝜎 + 1;
end if

end While

GSdisp∶ 𝜙u
Nu+1 ← uh,0(𝜇⋆) −

Nu∑
n=1

(
uh,0(𝜇⋆), 𝜙u

n

)
D(𝜇0)

𝜙u
n;

𝜙u
Nu+1 ←

𝜙u
Nu+1‖𝜙u

Nu+1‖D(𝜇0)
·

GSstress∶ 𝜙𝜎N𝜎+1 ← 𝜎h,0(𝜇⋆) −
N𝜎∑

m=1

(
𝜎h,0(𝜇⋆), 𝜙𝜎m

)
C(𝜇0)

𝜙𝜎m;

𝜙𝜎N𝜎+1 ←
𝜙𝜎N𝜎+1‖𝜙𝜎N𝜎+1‖C(𝜇0)

·

The basic idea of this proposed algorithm is that we use only one
single greedy loop to build simultaneously two RB spaces ( r,0

Nu (Ω) and
r,0

N𝜎 (Ω)) in an optimal way. At one greedy iteration, the particular set
of RB basis functions is chosen for “actual” enrichment depending on
the performance of its “testing” enrichment set on 𝜇⋆: which “testing”
set decreases ΔCRE

u (𝜇⋆) the most will be chosen.
Finally, the efficient offline-online computational procedures for the

TF-greedy sampling algorithm are detailed as follows. We consider
one TF-greedy iteration in more details. With the reduced spaces Nu ,
̃N𝜎 and associated offline terms available from the previous itera-
tion, we can perform an exhaustive search over the training sample
Ξtrain to compute ΔCRE,u

Nu ,N𝜎 ,N𝜃
(𝜇) from Eq. (83) (line 5 in Algorithm 1);

from which, the “worst” parameter point 𝜇⋆ can be extracted (line
6 in Algorithm 1). At 𝜇⋆, we solve the full order Eqs. (5), (14) and
(15) to compute ΔCRE,u

Nu+1,N𝜎 ,N𝜃
(𝜇⋆) and ΔCRE,u

Nu ,N𝜎+1,N𝜃
(𝜇⋆) (line 7 in Algo-

rithm 1). The enrichment of the field is determined via the compari-
son of these two error measures. If the displacement field is enriched,
uh,0(𝜇⋆) is added to the set Nu , a Gram–Schmidt orthogonalization
is performed and Nu is updated (lines 9–10 in Algorithm 1). Corre-
spondingly, all the offline terms associated with the RB displacement
basis functions (i.e., 𝜙u) in (41) and the CRE in (86)–(109) are all
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Fig. 3. Solution visualization with 𝜇test = (10,0.1).

computed/updated and stored. In the other case, if the stress field is
enriched, 𝜎h,0(𝜇⋆) is added to the set ̃N𝜎 , a Gram–Schmidt process is
also performed and N𝜎 is updated accordingly (lines 12–13 in Algo-
rithm 1). At last, all the offline terms associated with the RB stress basis
functions (i.e., 𝜙𝜎) in (53) and the CRE in (86)–(109) are all updated
and stored.

Procedure to select N𝜃 : As shown in Proposition 3.2, controlling the
term S (through e𝜃(𝜇)) such that (60) holds true is the key idea to obtain
the a posteriori CRE estimator (56). The most feasible way to control
e𝜃(𝜇) = 𝜃h(𝜇) − 𝜃r(𝜇) is by choosing adaptively N𝜃 which is the num-
ber of RB basis vectors for the temperature field of the heat diffusion
equation. In particular, we want to choose N𝜃 sufficiently big so that
ΔCRE
𝜃

(𝜇) is sufficiently small, and hence e𝜃(𝜇) will be small too because
ΔCRE
𝜃

(𝜇) ≥ ‖‖e𝜃(𝜇)‖‖k(𝜇),∀𝜇 from (31). For this purpose, we propose the
following criterion to select N𝜃 : choose N𝜃 (sufficiently big) such
that

√|S|
ΔCRE

u (𝜇)
≔

√||||ΔCRE
u (𝜇)2 −

(‖eu(𝜇)‖2
D(𝜇) + ‖e𝜎(𝜇)‖2

C(𝜇)

) ||||
ΔCRE

u (𝜇)
≤ 𝜖CRE,

∀𝜇 ∈ Ξst, (68)

where Ξst ⊂  is a given (coarse) subset of input parameters 𝜇 and 𝜖CRE

is a prescribed error tolerance.
Essentially, (68) implies that the normalized residual of Eq. (58)

is smaller than some prescribed tolerance over a given (coarse)
subset of the parameter domain . Thus if we prescribe some

small values for 𝜖CRE (e.g., 1%, 5%), Eq. (60) and ultimately (56)
will hold true. The selectNtheta function is described as follows

selectNtheta: N𝜃 = 1;
While 1

• Check (68) ∀𝜇 ∈ Ξst;
If exist any 𝜇 not satisfied (68) and N𝜃 < N𝜃

max
then

N𝜃 ← N𝜃 + 1;
end if
If N𝜃 == N𝜃

max or (68) is satisfied for all 𝜇 ∈
Ξst then
exit while loop;

end if
end while

In practice, N𝜃 takes the smallest possible value such that (68) is
satisfied with all 𝜇 ∈ Ξst. The iterative procedure starts with N𝜃 = 1
and keeps increasing to N𝜃

max whenever there exists any 𝜇 not sat-
isfied (68). Otherwise, the procedure stops at one specific value of
N𝜃

(
1 ≤ N𝜃 ≤ N𝜃

max
)

if all 𝜇 ∈ Ξst satisfy (68). This is a simple yet
effective criterion to choose appropriately N𝜃 such that the approx-
imation sign “≈” in (56) is as close to the equal sign “=” as pos-
sible. We use the following notation to denote this algorithm: N𝜃 =
selectNtheta

(
𝜖CRE,Ξst,Nu , ̃N𝜎

)
.

Fig. 4. (a) Maximum of gap
𝜎𝜃

, (b) number of RB basis functions, and (c) maximum of CRE error ΔCRE,max
𝜃

, temperature RB error 𝜖max
𝜃

and flux RB error 𝜖max
q over Ξtrain as functions of

GO-greedy iterations.
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Fig. 5. Virtual charts of 3 QoIs: 𝜎𝜃xx(𝜇) (first row), 𝜎𝜃yy(𝜇) (second row) and 𝜎
𝜃

xy(𝜇) (third row) with respect to the variations of material heterogeneity at various Greedy iterations for
thermal equation.

Remark 3.3.

1. From section 3.2.3, we see that (60) (and hence the approximation
(56)) is violated when the magnitude of ‖‖eu(𝜇)‖‖D(𝜇) and ‖‖e𝜎 (𝜇)‖‖C(𝜇)
are close to that of ‖‖e𝜃(𝜇)‖‖D(𝜇). In other words, the value of the CRE
estimator (56) is limited by the value of ‖‖e𝜃(𝜇)‖‖D(𝜇) and ultimately by
𝜖CRE.

2. In general, due to the way we solve the coupled thermoelasticity problem,
i.e., solve the heat equation first and then pass the approximated RB
temperature field to the elastic equation to solve for the displacement
field, the ROM approximation accuracy of the elastic equation could not
be better than that of the heat equation. This is the key point of this
proposed work.

3. There is a situation in which all 𝜇 points in Ξst do not validate the crite-
rion (68) for a given 𝜖CRE. In this case, N𝜃 is simply set to N𝜃

max as this is
the best possible value of N𝜃 . We note that the CRE estimator (ΔCRE(𝜇))
becomes an error approximation for both ‖eu(𝜇)‖D(𝜇) and ‖e𝜎(𝜇)‖C(𝜇)
rather than a strict upper bound as before. Hence, it may approximate

even better these two true errors.

4. Upper and lower bounds of the effective coefficient of thermal
expansion

The FE effective coefficient of thermal expansion (CTE) can be com-
puted numerically as [46].

𝛼h,eff(𝜇) = − 1
ΔT

Ch,eff(𝜇)⟨𝜎h(𝜇)⟩, (69)

where Ch,eff(𝜇) = Dh,eff(𝜇)−1 is the FE effective compliance tensor, and⟨𝜎h(𝜇)⟩ = 1|Ω| ∫Ω𝜎h(𝜇)dΩ is the FE average stress. Here, the components
of ⟨𝜎h(𝜇)⟩ can be computed as follows: for a 2D problem, 1 ≤ i, j ≤ 2,

Qh
ij (𝜇) = Σij⟨𝜎h(𝜇)⟩ = 1|Ω|∫ΩΣij ∶ 𝜎h(𝜇) dΩ

= 1|Ω|∫ΩΣij ∶ D(𝜇) ∶ 𝜖
(

uh(𝜇)
)

dΩ
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Fig. 6. Solution visualization with 𝜇test = (10,0.1).

− 1|Ω|∫Ω𝛴ij ∶ D(𝜇) ∶ 𝜖0
(
𝜃h(𝜇)

)
dΩ

= Qh,u
ij (𝜇) + Qh,𝜃

ij (𝜇), (70)

which is one specific FE QoI as defined in (16).
The RB approximation for the effective CTE is

𝛼r,eff(𝜇) = − 1
ΔT

Cr,eff(𝜇)⟨𝜎r(𝜇)⟩, (71)

where Cr,eff(𝜇) = Dr,eff(𝜇)−1 can be computed very efficiently from our
previous work [26], and ⟨𝜎r(𝜇)⟩ is a vector of several RB QoI as defined
in (21) and (42).

Since each ij-component of the term ⟨𝜎h(𝜇)⟩ = 𝜎h
ij(𝜇) is one specific

FE QoI, it can be bounded from above and below as

𝜎
r,low
ij (𝜇) ≤ 𝜎

h
ij(𝜇) ≤ 𝜎

r,up
ij (𝜇), (72)

where⎧⎪⎨⎪⎩
𝜎

r,low
ij (𝜇) = Qr,u,low

ij (𝜇) + Qr,𝜃,low
ij (𝜇)

𝜎
r,up
ij (𝜇) = Qr,u,up

ij (𝜇) + Qr,𝜃,up
ij (𝜇)

, 1 ≤ i, j ≤ 2,

from (35) and (67).
Now, if we can approximate sufficiently well Ch,eff(𝜇) ≈ Cr,eff(𝜇) =

cr
ij(𝜇) (thanks to the computations of Geff(𝜇) and 𝜆eff(𝜇) from our previ-

ous work [26]) and define

⎧⎪⎪⎨⎪⎪⎩
Qr,up

ij (𝜇) = max

{
−

cr
ij(𝜇)

ΔT
𝜎

r,low
ij (𝜇),−

cr
ij(𝜇)

ΔT
𝜎

r,up
ij (𝜇)

}
Qr,low

ij (𝜇) = min

{
−

cr
ij(𝜇)

ΔT
𝜎

r,low
ij (𝜇),−

cr
ij(𝜇)

ΔT
𝜎

r,up
ij (𝜇)

} , (73)

we obtain the bounds for the k-component of the FE effective CTE
as

(74)

where the indices are (i, j, k) = (1,1,1), (1,2,2) and (2,2,3), respectively.
Note that the key point of this derivation is that we need to approx-

imate sufficiently well Ch,eff(𝜇) ≈ Cr,eff(𝜇) (i.e., this associated error
reaches machine errors) such that the error

(
𝛼h,eff(𝜇) − 𝛼r,eff(𝜇)

)
now

depends only on
(⟨𝜎h(𝜇)⟩ − ⟨𝜎r(𝜇)⟩), not

(
Ch,eff(𝜇) − Cr,eff(𝜇)

)
.

Fig. 7. Effects of the prescribed tolerance 𝜖CRE and the size ||Ξst || on the number of tem-
perature RB basis functions N𝜃 using our proposed selectNtheta algorithm with fixed
2 and ̃2.
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Fig. 8. (a) Maximum of CRE error ΔCRE,max
u , displacement RB error 𝜖max

u and stress RB error 𝜖max
𝜎

over Ξtrain, (b) sizes of sets Nu and ̃N𝜎 , (c) displacement effectivity 𝜂CRE
u (𝜇), (d) stress

effectivity 𝜂CRE
𝜎

(𝜇), and (e) number of temperature RB basis functions N𝜃 as functions of TF-greedy iterations (setting 𝜖CRE = 0.01 and |Ξst| = 36).

5. Numerical study

We apply the TF-RBM algorithm to the metamodelling of compu-
tational models of thermoelastic heterogeneous materials, under 2D
plane strain assumption. The heterogeneous material of interest is
made of two isotropic linear thermoelastic phases possessing distinct
heat/elastic properties: circular inclusions and surrounding matrix. The
positions and diameters of the inclusions are distributed randomly. The
aim is to determine the so-called “overall” (or “effective”) CTE as a
function of some characteristics 𝜇 ∈  of the material heterogeneities.
In other words, we build a virtual chart of the overall homogenized
properties for the class of composite materials under investigation (see
Fig. 1).

We consider a 2D statistical volume element (SVE) model under
plane strain assumption in Fig. 2. The domain Ω is a unit square
which is defined by Ω = [0, 1] × [0,1]. The model is composed of
two distinct material phases: the circular inclusions characterized by
Young’s modulus Einc and thermal conductivity kinc; and the surround-
ing matrix characterized by Young’s modulus Emat and thermal con-
ductivity kmat. Both phases are assumed to have elastic and isotropic
behaviour. The random distribution of positions and diameters of the
inclusions is performed via the package [47,48]. For the heat con-
duction problem, the Dirichlet boundary conditions include 𝜃 = 0 and
𝜃 = 0.1 on the left and right edges, and no heat source nor sur-
face flux, respectively (see Fig. 2). For the elastic problem, there are
no body force nor surface traction; and the left edge is fixed as a
homogeneous Dirichlet boundary condition u = 0. In other words, the
model deformation is caused only by thermal load. The SVE bound-
ary value problems are parametrized by the material parameters 𝜇 =(
𝜇1, 𝜇2

)
=

(
kinc

kmat ,
Einc

Emat

)
∈  ≡ [0.1, 10] × [0.1, 10], where Emat = 1 and

the heat conductivity kmat
xx = kmat

yy = 1. The (very fine) FE mesh con-
sists of 7693 nodes and 15114 linear triangular elements as shown in
Fig. 2.

The ultimate goal is to build the virtual charts of the effective CTE as
functions of thermal and elastic contrasts. As shown in (69), the compu-
tation of effective CTE invokes the computation of effective compliance
tensor Ch,eff(𝜇) and the average stress tensor ⟨𝜎h(𝜇)⟩. The computation
of average stress tensor which implements all the proposed theory in
this paper will be detailed in section 5.1.

Regarding the computation of effective compliance tensor,
Ch,eff(𝜇) = Dh,eff(𝜇)−1, where Dh,eff(𝜇) is the effective stiffness tensor
which can be found via two effective Lamé constants Eh,eff(𝜇) and
𝜈h,eff(𝜇) (or 𝜆h,eff(𝜇) and Gh,eff(𝜇)), respectively. Following [46] (Eq.
(26)), Dh,eff(𝜇) is calculated at the reference temperature 𝜃ref, thus tak-
ing into account only the elastic effects and ignoring the thermal ones.
Consequently, considering only the elastic equation with the elastic con-
trast (𝜇2) as the only input parameter is sufficient to calculate Dh,eff(𝜇).
For convenience and compatibility, we adopt the approach in our previ-
ous work [26] to compute these effective Lamé constants and ultimately
the effective compliance tensor Ch,eff(𝜇). This part is detailed in section
5.2.

5.1. Computation of average stress tensor

The “truth” FE SVE problems read: find 𝜃h,0(𝜇) ∈ Θh,0(Ω) and
uh,0(𝜇) ∈  h,0(Ω) such that

∫Ωk(𝜇) · ∇𝜃h,0(𝜇) · v1 dΩ = −∫Ωk(𝜇) · ∇𝜃h,p(𝜇) · v1 dΩ, ∀v1 ∈ Θh,0(Ω),

(75a)
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Fig. 9. Virtual charts of 3 QoIs: 𝜎u
xx(𝜇) (first row), 𝜎u

yy(𝜇) (second row) and 𝜎
u
xy(𝜇) (third row) with respect to the variations of material heterogeneity at various Greedy iterations for

thermal equation.

∫Ω𝜖
(

uh,0(𝜇)
)
∶ D(𝜇) ∶ 𝜖

(
v2

)
dΩ

=∫Ω𝜖0
(
𝜃h(𝜇)

)
∶ D(𝜇) ∶ 𝜖

(
v2

)
dΩ, ∀v2 ∈  h,0(Ω),

=∫Ω𝜖0
(
𝜃h,0(𝜇)

)
∶ D(𝜇) ∶ 𝜖

(
v2

)
dΩ

+ ∫Ω𝜖0
(
𝜃h,p(𝜇)

)
∶ D(𝜇) ∶ 𝜖

(
v2

)
dΩ, (75b)

where 𝜃h,p(x, 𝜇) = 0.1, ∀𝜇 ∈ , x ∈ Γ𝜃 and uh,p(𝜇) = 0 are known tem-
perature/displacement fields as described above; 𝜃h,0(𝜇) and uh,0(𝜇) are
the unknown temperature/displacement fields which will be approxi-
mated using RB method.

The computation of effective CTE will need all components of the
average stress, i.e., ⟨𝜎h(𝜇)⟩ = 𝜎

h
k (𝜇), 1 ≤ k ≤ d(d+1)

2 = 3 with d = 2 for our
specific problem. Therefore, three QoIs from ⟨𝜎h(𝜇)⟩ include Qh

xx(𝜇),
Qh

yy(𝜇) and Qh
xy(𝜇) defined as

Qh
ij (𝜇) = Σij⟨𝜎h(𝜇)⟩ = 1|Ω|∫ΩΣij ∶ 𝜎h(𝜇) dΩ

= 1|Ω|∫ΩΣij ∶ D(𝜇) ∶ 𝜖
(

uh(𝜇)
)

dΩ

− 1|Ω|∫ΩΣij ∶ D(𝜇) ∶ 𝜖0
(
𝜃h(𝜇)

)
dΩ

= 𝜎
h,u
ij (𝜇) + 𝜎h,𝜃

ij (𝜇),

= Qh,u
ij (𝜇) + Qh,𝜃

ij (𝜇), 1 ≤ i, j ≤ 2,

(76)

where 𝛴xx = [0, 0,1]T , 𝛴yy = [0,1,0]T and 𝛴xy = [0,0,1]T are field
extractors to compute the x-, y- and xy-components of ⟨𝜎h(𝜇)⟩, respec-
tively. Note also that all QoIs 𝜎h,u

ij (𝜇) and 𝜎h,𝜃
ij (𝜇) are noncompliant out-

puts, respectively.
The affine representation of heat conductivity and Hooke’s elasticity

tensor over the parameter domain reads
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Fig. 10. Effective compliance tensor problem: solution visualization with 𝜇test = (10,0.1).

k(x, 𝜇) = kmat + (𝜇1 − 1)Hinc(x)kmat, ∀𝜇 ∈ , x ∈ Ω,

D(x, 𝜇) = Dmat + (𝜇2 − 1)Hinc(x)Dmat, ∀𝜇 ∈ ,x ∈ Ω.
(77)

Here, Hinc(x) is the indicator function of the inclusion phase. Namely,
it is equal to 1 for a point located in an inclusion and 0 elsewhere. The
tensors of the matrix phase kmat and Dmat are defined by (4) and (5)

with kmat =
⎡⎢⎢⎣
kmat

xx 0

0 kmat
yy

⎤⎥⎥⎦, kmat
xx = kmat

yy = 1, Emat = 1, 𝜈mat = 𝜈inc = 0.3,

respectively.
The affine representation for the inverse of the above tensors over

the parameter domain become

l(x, 𝜇) = lmat +
(

1
𝜇1

− 1
)

Hinc(x) lmat, ∀𝜇 ∈ , x ∈ Ω,

C(x, 𝜇) = Cmat +
(

1
𝜇2

− 1
)

Hinc(x) Cmat, ∀𝜇 ∈ , x ∈ Ω,

(78)

Fig. 11. Effective compliance tensor problem: (a) Maximum of gapG,𝜆 , gapG and gap𝜆 over Ξtrain, and (b) sizes of the sets pr, ̃pr, du and ̃du as functions of GO-greedy iterations
(only first 56 iterations are shown in (b)).
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Fig. 12. Effective compliance tensor problem: Virtual charts of Geff (𝜇) (first row) and 𝜆eff (𝜇) (second row) with respect to the variations of material heterogeneity after first 7 GO-greedy
iterations.

where lmat and Cmat are the heat and elastic compliance tensors of the
matrix phase.

In order to implement all sampling strategies (described in section 5
of [26], section 3.1.5 and section 3.2.5), we first create the train-
ing sample set Ξtrain. In particular, the parameter domain  ≡
[0.1, 10] × [0.1, 10] is divided by a logarithmically equidistant distribu-
tion along two axes 𝜇1 and 𝜇2 with 900 (= 30 × 30) sample “points”
𝜇 =

(
𝜇1, 𝜇2

)
.

In the following, the treatment of heat Eq. (75a) and associated QoIs
𝜎

h,𝜃
ij (𝜇) in (76) is detailed in section 5.1.1; while that of elastic Eq. (75b)

with QoIs 𝜎h,u
ij (𝜇) in Eq. (76) is described in section 5.1.2, respectively.

5.1.1. FE and GO-RBM approximations for the heat equation
a) Here, we have three noncompliant QoIs 𝜎h,𝜃

xx (𝜇), 𝜎
h,𝜃
yy (𝜇) and 𝜎

h,𝜃
xy (𝜇)

with three corresponding dual problems. The primal problem has
primal temperature and primal flux fields, while each dual problem
will also have its own dual temperature and dual flux fields. Thus,
there are totally eight sets of RB basis vectors that need to be built.
For reference, the FE primal temperature and FE primal flux fields
are shown in Fig. 3.

b) We implement the GO-greedy sampling strategy (section 3.1.5 and
section 5.2 of [26]) to build simultaneously these eight sets. The
convergent results are shown in Fig. 4. We show the maximum
of three uncertainty gaps gapmax

𝜎𝜃xx
, gapmax

𝜎𝜃yy
and gapmax

𝜎𝜃xy
and the

evolution of the temperature and flux reduced basis functions in
Fig. 4a and b, respectively. In Fig. 4c, we show the value of the
maximum of primal CRE ΔCRE,max

𝜃,pr = max𝜇∈Ξtrain
ΔCRE
𝜃,pr (𝜇), the primal

temperature error 𝜖max
𝜃,pr = max𝜇∈Ξtrain

‖e𝜃,pr(𝜇)‖k(𝜇) and primal flux
error 𝜖max

q,pr = max𝜇∈Ξtrain
‖eq,pr(𝜇)‖l(𝜇) over Ξtrain as a function of the

greedy iteration number.

The GO-RBM algorithm converges both in QoI gaps and solution
errors in energy norms. Due to the way of excitation via Dirichlet
boundary conditions for our particular problem, the xy-component
of QoIs are zeros, i.e., 𝜎h,𝜃

xy (𝜇) = 𝜎
h,u
xy (𝜇) = 0. This is reflected in

Fig. 4a and b, where gapmax
𝜎𝜃xy

= 0; {𝜙𝜃du3
}, {𝜙q

du3
} each has only one

“initial” RB basis vector during the whole Greedy algorithm. Lastly,
Fig. 4b and c show that the maximum number of RB basis functions
for temperature field will be N𝜃,pr

max = 10 at greedy iterations 60–80.
These information will be used in the TF-RBM approximation of the
elastic equation afterwards.

c) Finally, we show the virtual charts of 3 QoIs 𝜎𝜃ij(𝜇), 1 ≤ i, j ≤ 2 as
functions of material heterogeneity at various Greedy iterations on
Fig. 5.

5.1.2. FE and TF-RBM approximations for the elastic equation
a) With the available results from section 5.1.1, we now proceed to

approximate the elastic equation with three QoIs 𝜎h,u
xx (𝜇), 𝜎h,u

yy (𝜇) and

𝜎
h,u
xy (𝜇). Note that there is no dual problem to solve as explained

in section 3.2.4. For reference, the FE primal displacement and FE
primal stress fields are shown in Fig. 6.

b) Regarding the proposed algorithm selectNtheta described in
section 3.2.5, there are two control parameters which are a pre-
scribed tolerance 𝜖CRE and a coarse discretized subset Ξst of .
The effects of these two parameters on N𝜃 is investigated para-
metrically as follows. In particular, we fix 2 = {𝜙u

i , 1 ≤ i ≤ 2},
̃2 = {𝜙𝜎j , 1 ≤ j ≤ 2} and let 𝜖CRE ∈ {0.5, 0.1, 0.01, 0.001, 0.0001}
and ||Ξst|| ∈ {9, 16, 36, 64, 100}; then run selectNtheta algorithm
to find N𝜃 corresponding with each pair of

(
𝜖CRE, | Ξst | ) in the

above sets. The final result is shown in Fig. 7. We observe from
Fig. 7 that N𝜃 is sensitive to the change of 𝜖CRE and less sensitive
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Fig. 13. Virtual charts of the xx-component (first column) and yy-component (second column) of effective CTE, 𝛼xx(𝜇) and 𝛼yy(𝜇), with respect to the variations of material heterogeneity
at various combinations of the number of Greedy iterations for thermal and elastic equations.

to that of ||Ξst||. The general rule would be: N𝜃 will increase with
a decrease in 𝜖CRE and vice versa; and N𝜃 might be less sensitive
to ||Ξst||. This is reasonable as we need more temperature RB basis
functions to make the approximation sign in (56) closer to the equal
sign.

c) From the above analysis, we use the “modest” setting
(
𝜖CRE, |Ξst|) =

(0.01, 36) to implement the two-field greedy algorithm. The con-
vergent results are presented in Fig. 8. Fig. 8a shows the max-
imum values of CRE ΔCRE,max

u = max𝜇∈Ξtrain
ΔCRE

u (𝜇), the displace-
ment error 𝜖max

u = max𝜇∈Ξtrain
‖eu(𝜇)‖D(𝜇) and stress error 𝜖max

𝜎 =
max𝜇∈Ξtrain

‖e𝜎(𝜇)‖C(𝜇) over Ξtrain as a function of the greedy
iteration number. Fig. 8b shows the evolution of the displace-
ment/stress reduced basis; Fig. 8c and d report all displacement
and stress effectivities for all 𝜇 ∈ Ξtrain; while 8e presents the his-

tory of number of temperature RB basis functions found by the
selectNtheta algorithm as functions of the greedy iterations,
respectively.
We observe that the TF-RBM converges well both in stress and
displacement fields, and the selectNtheta algorithm did choose
adaptively N𝜃,pr for the CRE equality of the elastic equation (Fig. 8e).
This is reflected clearly in Fig. 8c and d that our CRE upper bound
is strict and rigorous.

d) Finally, we show the virtual charts of 3 QoIs 𝜎u
ij(𝜇), 1 ≤ i, j ≤ 2 as

functions of material heterogeneity at various Greedy iterations in
Fig. 9. We observe that the goal-oriented bounds derived in (67)
indeed work very well (i.e., strictly upper/lower bounds). This is
because the approximation sign in (56) is very close to the equal one
thanks to the good performance of the proposed selectNtheta
algorithm in c) above.
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Table 1
Comparison of CPU-time for FE and RBa analyses of problem 2 (tFEM = 0.6501sec).

Greedy iter. (thermal) Greedy iter. (elastic) max𝜇∈Ξtrain

|||𝛼h
xx (𝜇)−𝛼

r
xx (𝜇)

||||||𝛼h
xx (𝜇)

||| Speedup = tFEM
tRB(online)

20 20 2.4124 × 100 247
25 25 2.1003 × 10−2 242
28 28 6.3747 × 10−4 241
30 30 2.0382 × 10−4 241
40 38 1.7793 × 10−4 240
60 40 5.2011 × 10−5 232
60 50 1.4621 × 10−5 229
a The number of Greedy iterations to evaluate the RB effective compliance tensor is fixed at 45.

5.2. Computation of the effective compliance tensor

5.2.1. FE approximations for effective compliance tensor
We now turn back to the computation of the effective compliance

tensor Ch,eff(𝜇). The specific model problem is elaborated in Ref. [26]
(section 6.1), here we recall briefly the main equations and results.
The model problem as shown in Fig. 2 with the elastic contrast as
the only parameter is considered. There are no body force nor sur-
face traction–the only load applying to the model is via parametrized
Dirichlet boundary conditions. The SVE boundary value problem is
parametrized by the material parameters 𝜇m and the load parame-
ters 𝜇l as: 𝜇 =

(
𝜇m, 𝜇l) ≡ (

𝜇m, 𝜇l
1, 𝜇

l
2, 𝜇

l
3

) ≡ (
𝜇1, 𝜇2, 𝜇3, 𝜇4

)
. The mate-

rial heterogeneities are only parametrized by the elastic contrast 𝜇m ≡
𝜇1 = Einc

Emat . The load parameters 𝜇l are constituted by the independent
components of the effective strain tensor 𝜖M, where 𝜖M∈ ℝ2 ×ℝ2 and
𝜖M = 𝜖MT . More precisely, we define 𝜇l

1 ≡ 𝜇2 = 𝜖M
11, 𝜇l

2 ≡ 𝜇3 = 𝜖M
22 and

𝜇l
3 ≡ 𝜇4 = 𝜖M

12. The affine representation of the Dirichlet boundary con-
ditions is thus defined as

w(x, 𝜇) = 𝜖M(𝜇l)(x − x)

=

((
1 0

0 0

)
𝜇2 +

(
0 0

0 1

)
𝜇3 +

(
0 1

1 0

)
𝜇4

)
(x − x),

∀𝜇 ∈ , x ∈ 𝜕Ωw , (79)

with x being the barycenter of Ω (i.e., ∫Ω(x − x) dΩ = 0).
The “truth” FE SVE problem reads: find uh,0(𝜇) ∈  h,0(Ω) such that

∫Ω𝜖
(

uh,0(𝜇)
)
∶ D(𝜇) ∶ 𝜖(v) dΩ = −∫Ω𝜖

(
uh,p(𝜇)

)
∶ D(𝜇) ∶ 𝜖(v) dΩ,

= f̂ (v), ∀v ∈  h,0(Ω), (80)

where uh,p(x, 𝜇) = w(x, 𝜇), ∀𝜇 ∈ ,x ∈ 𝜕Ωw is a known displacement
field as described above, and uh,0(𝜇) is the unknown displacement
field approximated using the RB method. The “truth” effective Lamé
constants GM,h(𝜇m) ≡ Gh(𝜇) and 𝜆M,h(𝜇m) ≡ 𝜆h(𝜇) are computed as (see
Chapter 7 of [49])

Gh(𝜇) = 𝓁G
(

uh(𝜇)
)
= 1|Ω|∫Ω𝛴G ∶ D(𝜇) ∶ 𝜖(uh(𝜇)) dΩ, (81a)

𝜆h(𝜇) = 𝓁𝜆
(

uh(𝜇)
)
= 1|Ω|∫Ω𝛴𝜆 ∶ D(𝜇) ∶ 𝜖(uh(𝜇)) dΩ, (81b)

where ΣG and Σ𝜆 are field extractors such that 𝓁G(v) = − 1|Ω| f̂ (v) and

𝓁𝜆(v) ≠ f̂ (v). Hence, Gh(𝜇) and 𝜆h(𝜇) are compliant and noncompliant
outputs, respectively.

We now note that by solving {(80), (81)}, setting 𝜇 ≡ 𝜇G =(
𝜇1, 0, 0,

1
2

)
, ΣG =

(
0 1

2
1
2 0

)
renders Gh(𝜇); while setting 𝜇 ≡ 𝜇𝜆 =

(
𝜇1,1,0,

1√
2

)
, Σ𝜆 =

⎛⎜⎜⎝
1 − 1√

2

− 1√
2

0

⎞⎟⎟⎠ renders 𝜆h(𝜇), respectively. There-

fore, the only “actual” parameter of this problem is 𝜇1 = Einc

Emat ∈  ≡
[0.1,10]; and note that each 𝜇1 provides correspondingly one 𝜇G and
one 𝜇𝜆 as described above. The (very fine) FE mesh consists of 7693
nodes and 15114 linear triangular elements as shown in Fig. 2. The FE
space to approximate the 2D homogenization problem is of dimension
 = 14846. The reference parameter used in this work is chosen as
𝜇0 = (1,0,0, 0); Qa = 2, nw = 3, nc = 2, and ñp = 0 as there is no body
force nor surface traction applied to the model (Note that the dual prob-
lem will have ñp ≠ 0 as there is an applied body force which comes
from the primal output 𝓁𝜆(v).). We show the FE displacement field and
the corresponding FE stress field in Fig. 10 with 𝜇𝜆,test = (5,1,0, 1√

2
),

respectively.
To implement the GO-greedy sampling strategy (section 5.2 of [26]),

we first create the training sample set Ξtrain. In particular, the range  ≡
[0.1,10] is divided by a logarithmically equidistant distribution with
500 sample points 𝜇m; and each 𝜇m provides correspondingly one 𝜇G

and one 𝜇𝜆. Hence, the training sample set Ξtrain contains a total of 1000
sample parameter values which are 500 pairs (𝜇G, 𝜇𝜆) logarithmically
equidistant distributed.

5.2.2. RB approximations for effective compliance tensor
The QoI gaps of the homogenization problem are defined as

gapG ≡ gap(𝜇G) =
2 |||Gr,up(𝜇G) − Gr,low(𝜇G)|||||Gr,up(𝜇G)|| + ||Gr,low(𝜇G)|| , (82a)

gap𝜆 ≡ gap(𝜇𝜆) =
2 |||𝜆r,up(𝜇𝜆) − 𝜆r,low(𝜇𝜆)|||||𝜆r,up(𝜇𝜆)|| + ||𝜆r,low(𝜇𝜆)|| , (82b)

where Gr,up(𝜇), Gr,low(𝜇), 𝜆r,up(𝜇) and 𝜆r,low(𝜇) have the same roles as
Qr,u,up(𝜇) and Qr,u,low(𝜇) in (67) for compliant and noncompliant QoIs,
respectively. In addition, there is a dual equation associated with 𝜆h(𝜇),
and no dual equation associated with Gh(𝜇) due to this reason.

We now implement the GO greedy sampling strategy (section 5.2
of [26]). The results are shown in Fig. 11. In particular, we present
the maximum of gaps gapmax

G,𝜆 = max𝜇∈Ξtrain
{gapG,gap𝜆} together with

gapmax
G = max𝜇G∈Ξtrain

gapG and gapmax
𝜆

= max𝜇𝜆∈Ξtrain
gap𝜆 in Fig. 11a.

In addition, Fig. 11b shows the sizes of pr, ̃pr, du and ̃du as
functions of GO-greedy iterations (first 56 iterations), respectively. It
is observed from Fig. 11a that the GO-greedy strategy converges in a
goal-oriented manner: the strategy only enriches necessary RB basis
functions (primal/dual displacement/stress) to minimize the QoI gaps.
Fig. 11b shows that the primal displacement/stress RB basis functions
are enriched more frequently than the dual ones. This is because pr
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and ̃pr help to improve both gaps, i.e., {gapG,gap𝜆}; while du and
̃du contributes to the improvement of gap𝜆 only. Fig. 12 illustrates the
virtual charts of Geff(𝜇) and 𝜆eff(𝜇) as functions of the material hetero-
geneity 𝜇m = Einc

Emat after first 7 GO-greedy iterations, respectively.
Finally, as we will use the ROM approximation Ch,eff(𝜇) ≈ Cr,eff(𝜇)

in the computation of the bounds for the effective CTE (74), we
will use the best possible approximation, i.e., with 45 iterations in
Fig. 11a.

5.3. Computation of the effective CTE

Now all necessary ingredients are ready so that we can easily obtain
the bounds for the effective CTE. Fig. 13 illustrates the virtual charts
of the effective coefficients of thermal expansion in x- and y-directions,
i.e., 𝛼xx(𝜇) and 𝛼yy(𝜇) as functions of material heterogeneity 𝜇1 = kinc

kmat

and 𝜇2 = Einc

Emat using various combinations of the number of Greedy
iterations of thermal and elastic equations, respectively. The bounds
for 𝛼h

xx(𝜇) and 𝛼
h
yy(𝜇) are derived in (74). We also note that the xy-

component of the effective CTE, 𝛼h
xy(𝜇), is zero and hence is not shown

here.
We report the “online” computational time for the computation

𝜇 →
{
𝛼

r
xx(𝜇), 𝛼

r,low∕up
xx (𝜇)

}
and compare it with that of FE computa-

tion 𝜇 → 𝛼
h
xx(𝜇). Notice that the yy-component is completely similar and

hence we just use the xx-component as an illustration. Table 1 records
the RB online computational time and associated maximum relative
error for 𝛼h

xx(𝜇) over Ξtrain as a function of number of Greedy iterations
for both thermal and elastic equations. The results show that we achieve
the speedup of up to two orders of magnitude while still maintaining
very high accuracy.

Finally, we comment on the convergence of the proposed greedy
algorithm with the increase/decrease of number of particles for

a given volume fraction of inclusions/matrix. In general, with an
increasing/decreasing of number of particles, the Kolmogorov N-
Width for the particular parametrized homogenization problem might
increase/decrease correspondingly, the convergence rate of greedy
algorithm thus might be slower/faster appropriately. This point was
already mentioned in section 6.2.2 of [26]. However, the key point is
that the greedy algorithm will eventually converge following the proof
in Ref. [45].

6. Conclusion

A new reduced basis framework has been proposed for the meta-
modelling of parametrized one-way coupled thermoelasticity problems.
While the CRE estimator for the thermal PDE is straightforward, that
of the elastic PDE does not hold true due to the appearance of expan-
sion terms. The first novel idea is to propose an adaptive algorithm to
eliminate those terms, thus recover approximately the CRE equality for
the elastic PDE. This CRE estimator is then used as an indication of
accuracy of the ROM to (i) construct the projection spaces based on a
greedy sampling of the parameter domain and (ii) certify the final ROM.
The method requires the construction of separate ROMs for the primal
(displacement) and flux (stress) fields. The second key idea is to extend
this concept to the context of goal-oriented error estimation with many
QoIs. The technique is applied to evaluate the effective CTE of het-
erogeneous composite materials. Numerical experiments show that the
approach permits to construct ROMs that are directly certified in terms
of input/output maps, and extremely efficient in terms of computational
expense.

In our future work, we will develop more efficient sampling tech-
niques to further reduce the computational cost while we can more
strictly control the error from the ROM approximation. It can be done
via developing more suitable objective function for the developed GO-
greedy algorithm.

Appendix A. offline-online computational procedures for ΔCRE(𝜇)

We first expand (56) and noting the definition of ‖ · ‖C(𝜇) (Proposition 3.2) as follows

ΔCRE,u
Nu ,N𝜎,N𝜃

(𝜇)2 ≔ ‖𝜎r(𝜇) − 𝜎(𝜇)‖2
C(𝜇) = ∫Ω

(
𝜎r(𝜇) − 𝜎(𝜇)

)
∶ C(𝜇) ∶

(
𝜎r(𝜇) − 𝜎(𝜇)

)
dΩ = ∫Ω𝜎

r(𝜇) ∶ C(𝜇) ∶ 𝜎r(𝜇) dΩ

+ ∫Ω𝜎(𝜇) ∶ C(𝜇) ∶ 𝜎(𝜇) dΩ − 2∫Ω𝜎
r(𝜇) ∶ C(𝜇) ∶ 𝜎(𝜇) dΩ = 𝐑𝐑(𝜇) +𝐇𝐇(𝜇) − 2𝐑𝐇(𝜇). (83)

Now, we expand 𝜎r(𝜇) by using (5), (39) and (40) as

𝜎r(𝜇) = D(𝜇) ∶ 𝜖
(

ur,0(𝜇) + uh,p(𝜇)
)
− D(𝜇) ∶ 𝜖0

(
𝜃r,0(𝜇) + 𝜃h,p(𝜇)

)
= D(𝜇) ∶ 𝜖

(Nu∑
i=1

𝛼u
i (𝜇)𝜙

u
i +

nu,w∑
j=1

𝛾u,w
j (𝜇)𝜓u

j

)
− D(𝜇) ∶ 𝜖0

⎛⎜⎜⎝
N𝜃∑
i=1

𝛼𝜃i (𝜇)𝜙
𝜃
i +

n𝜃,w∑
i=1

𝛾𝜃,wi (𝜇)𝜓𝜃i
⎞⎟⎟⎠

= D(𝜇) ∶ 𝜖

(Nu∑
i=1

𝛼u
i (𝜇)𝜙

u
i

)
+ D(𝜇) ∶ 𝜖

(nu,w∑
j=1

𝛾u,w
j (𝜇)𝜓u

j

)
− D(𝜇) ∶ 𝜖0

⎛⎜⎜⎝
N𝜃∑
i=1

𝛼𝜃i (𝜇)𝜙
𝜃
i

⎞⎟⎟⎠ − D(𝜇) ∶ 𝜖0
⎛⎜⎜⎝

n𝜃,w∑
i=1

𝛾𝜃,wi (𝜇)𝜓𝜃i
⎞⎟⎟⎠

= 𝐁1(𝜇) + 𝐁2(𝜇) − 𝐁3(𝜇) − 𝐁4(𝜇), (84)

and 𝜎(𝜇) by using (49) and (50) as

𝜎(𝜇) = 𝜎r,0(𝜇) + 𝜎h,p(𝜇) =
N𝜎∑
i=1

𝛼𝜎i (𝜇)𝜙
𝜎
i +

ñp∑
j=1

𝛾̃
p
j (𝜇)𝜎

p
j = 𝐁5(𝜇) + 𝐁6(𝜇). (85)
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1. Using (84), the term 𝐑𝐑(𝜇) in (83) can be written as

𝐑𝐑(𝜇) = ∫Ω𝜎
r(𝜇) ∶ C(𝜇) ∶ 𝜎r(𝜇) dΩ

= ∫Ω
(
𝐁1(𝜇) + 𝐁2(𝜇) − 𝐁3(𝜇) − 𝐁4(𝜇)

)
∶ C(𝜇) ∶

(
𝐁1(𝜇) + 𝐁2(𝜇) − 𝐁3(𝜇) − 𝐁4(𝜇)

)
dΩ

= ∫Ω𝐁1(𝜇) ∶ C(𝜇) ∶ 𝐁1(𝜇) dΩ + ∫Ω𝐁1(𝜇) ∶ C(𝜇) ∶ 𝐁2(𝜇) dΩ + · · · + ∫Ω𝐁4(𝜇) ∶ C(𝜇) ∶ 𝐁4(𝜇) dΩ

= 𝐑𝐑11(𝜇) + 𝐑𝐑12(𝜇) + · · · + 𝐑𝐑44(𝜇)

= 𝐑𝐑11(𝜇) + 2𝐑𝐑12(𝜇) − 2𝐑𝐑13(𝜇) − 2𝐑𝐑14(𝜇) + 𝐑𝐑22(𝜇) − 2𝐑𝐑23(𝜇) − 2𝐑𝐑24(𝜇) + 𝐑𝐑33(𝜇) + 2𝐑𝐑34(𝜇) + 𝐑𝐑44(𝜇). (86)

Let us take the term 𝐑𝐑11(𝜇) as an example

𝐑𝐑11(𝜇) = ∫Ω
(

D(𝜇) ∶ 𝜖

(Nu∑
i=1

𝛼u
i (𝜇)𝜙

u
i

))
∶ C(𝜇) ∶

(
D(𝜇) ∶ 𝜖

( Nu∑
j=1

𝛼u
j (𝜇)𝜙

u
j

))
dΩ

= ∫Ω𝜖
( Nu∑

i=1
𝛼u

i (𝜇)𝜙
u
i

)
∶ D(𝜇) ∶ 𝜖

( Nu∑
j=1

𝛼u
j (𝜇)𝜙

u
j

)
dΩ, (as D(𝜇) ∶ C(𝜇) = 𝕀)

=
Nu∑

i,j=1
𝛼u

i (𝜇)
(
∫Ω𝜖(𝜙

u
i ) ∶ D(𝜇) ∶ 𝜖(𝜙u

j ) dΩ
)
𝛼u

j (𝜇) =
Nu∑

i,j=1

nD∑
k=1

𝛼u
i (𝜇)𝛼

u
j (𝜇)𝛾

D
k (𝜇)

(
∫𝛀𝝐(𝝓

u
i ) ∶ Dk ∶ 𝝐(𝝓u

j ) d𝛀
)
. (87)

We observe from the last line of (87) that the term inside the brackets (in bold typeface) is 𝜇-independent and hence can be pre-computed and
stored in the Offline stage; and then in the Online stage 𝐑𝐑11(𝜇) can be estimated rapidly with the computational cost independent of  u by
assembling all remaining 𝜇-dependent terms. Applying the same trick to other terms, we obtain the following results (note that all the offline
terms will be in bold typeface):

𝐑𝐑12(𝜇) =
Nu∑
i=1

nu,w∑
j=1

nD∑
k=1

𝛼u
i (𝜇)𝛾

u,w
j (𝜇)𝛾D

k (𝜇)
(
∫𝛀𝝐(𝝓

u
i ) ∶ Dk ∶ 𝝐(𝝍u

j ) d𝛀
)
, (88)

𝐑𝐑13(𝜇) =
Nu∑
i=1

N𝜃∑
j=1

nD∑
k=1

𝛼u
i (𝜇)𝛼

𝜃
j (𝜇)𝛾

D
k (𝜇)

(
∫𝛀𝝐(𝝓

u
i ) ∶ Dk ∶ 𝝐0(𝝓

𝜽
j ) d𝛀

)
, (89)

𝐑𝐑14(𝜇) =
Nu∑
i=1

n𝜃,w∑
j=1

nD∑
k=1

𝛼u
i (𝜇)𝛾

𝜃,w
j (𝜇)𝛾D

k (𝜇)
(
∫𝛀𝝐(𝝓

u
i ) ∶ Dk ∶ 𝝐0(𝝍𝜽j ) d𝛀

)
, (90)

𝐑𝐑22(𝜇) =
nu,w∑
i=1

nu,w∑
j=1

nD∑
k=1

𝛾u,w
i (𝜇)𝛾u,w

j (𝜇)𝛾D
k (𝜇)

(
∫𝛀𝝐(𝝍

u
i ) ∶ Dk ∶ 𝝐(𝝍u

j ) d𝛀
)
, (91)

𝐑𝐑23(𝜇) =
nu,w∑
i=1

N𝜃∑
j=1

nD∑
k=1

𝛾
u,w
i (𝜇)𝛼𝜃j (𝜇)𝛾

D
k (𝜇)

(
∫𝛀𝝐(𝝍

u
i ) ∶ Dk ∶ 𝝐0(𝝓𝜽j ) d𝛀

)
, (92)

𝐑𝐑24(𝜇) =
nu,w∑
i=1

n𝜃,w∑
j=1

nD∑
k=1

𝛾u,w
i (𝜇)𝛾𝜃,wj (𝜇)𝛾D

k (𝜇)
(
∫𝛀𝝐(𝝍

u
i ) ∶ Dk ∶ 𝝐0(𝝍

𝜽
j ) d𝛀

)
, (93)

𝐑𝐑33(𝜇) =
N𝜃∑
i=1

N𝜃∑
j=1

nD∑
k=1

𝛼𝜃i (𝜇)𝛼
𝜃
j (𝜇)𝛾

D
k (𝜇)

(
∫𝛀𝝐0(𝝓𝜽i ) ∶ Dk ∶ 𝝐0(𝝓𝜽j ) d𝛀

)
, (94)

𝐑𝐑34(𝜇) =
N𝜃∑
i=1

n𝜃,w∑
j=1

nD∑
k=1

𝛼𝜃i (𝜇)𝛾
𝜃,w
j (𝜇)𝛾D

k (𝜇)
(
∫𝛀𝝐0(𝝓𝜽i ) ∶ Dk ∶ 𝝐0(𝝍𝜽j ) d𝛀

)
, (95)

and

𝐑𝐑44(𝜇) =
n𝜃,w∑
i=1

n𝜃,w∑
j=1

nD∑
k=1

𝛾𝜃,wi (𝜇)𝛾𝜃,wj (𝜇)𝛾D
k (𝜇)

(
∫𝛀𝝐0(𝝍𝜽i ) ∶ Dk ∶ 𝝐0(𝝍𝜽j ) d𝛀

)
. (96)

We note that for all the terms related to 𝜖0(•), 𝜖0(•)
def
= 𝜖0(• − 𝜃ref), where 𝜃ref is the reference temperature for which thermal strains are zero (see

for instance Eq. (1.9) of [28] or Eq. (8.23) in Ref. [29]). In our derivations, we choose 𝜃ref = 0 for simplicity, but its extension for the general
case 𝜃ref ≠ 0 is really straightforward since the term 𝜖0(𝜃ref) is treated as an additional constant.
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2. Similarly, using (85), the term 𝐇𝐇(𝜇) in (83) can be written as

𝐇𝐇(𝜇) = ∫Ω𝜎(𝜇) ∶ C(𝜇) ∶ 𝜎(𝜇) dΩ = ∫Ω
(
𝐁5(𝜇) + 𝐁6(𝜇)

)
∶ C(𝜇) ∶

(
𝐁5(𝜇) + 𝐁6(𝜇)

)
dΩ

= ∫Ω𝐁5(𝜇) ∶ C(𝜇) ∶ 𝐁5(𝜇) dΩ + 2∫Ω𝐁5(𝜇) ∶ C(𝜇) ∶ 𝐁6(𝜇) dΩ + ∫Ω𝐁6(𝜇) ∶ C(𝜇) ∶ 𝐁6(𝜇) dΩ

= 𝐇𝐇55(𝜇) + 2𝐇𝐇56(𝜇) +𝐇𝐇66(𝜇). (97)

Using the same method as above: substituting the expressions for 𝐁5(𝜇) and 𝐁6(𝜇) (from (85)), expanding and assembling the 𝜇-independent
terms, we finally obtain

𝐇𝐇55(𝜇) =
N𝜎∑
i=1

N𝜎∑
j=1

nC∑
k=1

𝛼𝜎i (𝜇)𝛼
𝜎
j (𝜇)𝛾

C
k (𝜇)

(
∫𝛀𝝓

𝝈
i ∶ Ck ∶ 𝝓𝝈j d𝛀

)
, (98)

𝐇𝐇56(𝜇) =
N𝜎∑
i=1

ñp∑
j=1

nC∑
k=1

𝛼𝜎i (𝜇) 𝛾̃
p
j (𝜇)𝛾

C
k (𝜇)

(
∫𝛀𝝓

𝝈
i ∶ Ck ∶ 𝝈𝐩

j d𝛀
)
, (99)

𝐇𝐇66(𝜇) =
ñp∑
i=1

ñp∑
j=1

nC∑
k=1

𝛾̃
p
i (𝜇) 𝛾̃

p
j (𝜇)𝛾

C
k (𝜇)

(
∫𝛀𝝈

𝐩
i ∶ Ck ∶ 𝝈𝐩

j d𝛀
)
. (100)

3. Finally, for the term 𝐑𝐇(𝜇) in (105), we also have

𝐑𝐇(𝜇) = ∫Ω𝜎
r(𝜇) ∶ C(𝜇) ∶ 𝜎(𝜇) dΩ

= ∫Ω
(
𝐁1(𝜇) + 𝐁2(𝜇) − 𝐁3(𝜇) − 𝐁4(𝜇)

)
∶ C(𝜇) ∶

(
𝐁5(𝜇) + 𝐁6(𝜇)

)
dΩ

= ∫Ω𝐁1(𝜇) ∶ C(𝜇) ∶ 𝐁5(𝜇) dΩ + ∫Ω𝐁1(𝜇) ∶ C(𝜇) ∶ 𝐁6(𝜇) dΩ + · · · − ∫Ω𝐁4(𝜇) ∶ C(𝜇) ∶ 𝐁6(𝜇) dΩ

= 𝐑𝐇15(𝜇) + 𝐑𝐇16(𝜇) + 𝐑𝐇25(𝜇) + 𝐑𝐇26(𝜇) − 𝐑𝐇35(𝜇) − 𝐑𝐇36(𝜇) − 𝐑𝐇45(𝜇) − 𝐑𝐇46(𝜇), (101)

where

𝐑𝐇15(𝜇) =
Nu∑
i=1

N𝜎∑
j=1

𝛼u
i (𝜇)𝛼

𝜎
j (𝜇)

(
∫𝛀𝝐(𝝓

u
i ) ∶ 𝝓

𝝈
j d𝛀

)
, (102)

𝐑𝐇16(𝜇) =
Nu∑
i=1

ñp∑
j=1

𝛼u
i (𝜇) 𝛾̃

p
j (𝜇)

(
∫𝛀𝝐(𝝓

u
i ) ∶ 𝝈

𝐩
j d𝛀

)
, (103)

𝐑𝐇25(𝜇) =
nu,w∑
i=1

N𝜎∑
j=1

𝛾u,w
i (𝜇)𝛼𝜎j (𝜇)

(
∫𝛀𝝐(𝝍

u
i ) ∶ 𝝓

𝝈
j d𝛀

)
, (104)

𝐑𝐇26(𝜇) =
nu,w∑
i=1

ñp∑
j=1

𝛾u,w
i (𝜇) 𝛾̃p

j (𝜇)
(
∫𝛀𝝐(𝝍

u
i ) ∶ 𝝈

𝐩
j d𝛀

)
, (105)

𝐑𝐇35(𝜇) =
N𝜃∑
i=1

N𝜎∑
j=1

𝛼𝜃i (𝜇)𝛼
𝜎
j (𝜇)

(
∫𝛀𝝐0(𝝓𝜽i ) ∶ 𝝓

𝝈
j d𝛀

)
, (106)

𝐑𝐇36(𝜇) =
N𝜃∑
i=1

ñp∑
j=1

𝛼𝜃i (𝜇) 𝛾̃
p
j (𝜇)

(
∫𝛀𝝐0(𝝓𝜽i ) ∶ 𝝈

𝐩
j d𝛀

)
, (107)

𝐑𝐇45(𝜇) =
n𝜃,w∑
i=1

N𝜎∑
j=1

𝛾
𝜃,w
i (𝜇)𝛼𝜎j (𝜇)

(
∫𝛀𝝐0(𝝍𝜽i ) ∶ 𝝓

𝝈
j d𝛀

)
, (108)

𝐑𝐇46(𝜇) =
n𝜃,w∑
i=1

ñp∑
j=1

𝛾
𝜃,w
i (𝜇) 𝛾̃p

j (𝜇)
(
∫𝛀𝝐0(𝝍𝜽i ) ∶ 𝝈

𝐩
j d𝛀

)
. (109)

In summary, there are 4 types of terms that need to be pre-computed offline as follows.

• 5 terms relates to {𝜙u}: the bold terms of 𝐑𝐑11(𝜇), 𝐑𝐑12(𝜇), 𝐑𝐑13(𝜇), 𝐑𝐑14(𝜇) and 𝐑𝐇16(𝜇).
• 5 terms relates to {𝜙𝜎}: the bold terms of 𝐇𝐇55(𝜇), 𝐇𝐇56(𝜇), 𝐑𝐇25(𝜇), 𝐑𝐇35(𝜇) and 𝐑𝐇45(𝜇).
• 1 term relates to both {𝜙u} and {𝜙𝜎}: the bold term of 𝐑𝐇15(𝜇).
• 10 independent terms which do not depend on either {𝜙u} or {𝜙𝜎}, and thus can be computed independently: 𝐑𝐑22(𝜇), 𝐑𝐑23(𝜇), 𝐑𝐑24(𝜇),

𝐑𝐑33(𝜇), 𝐑𝐑34(𝜇), 𝐑𝐑44(𝜇), 𝐇𝐇66(𝜇), 𝐑𝐇26(𝜇), 𝐑𝐇36(𝜇) and 𝐑𝐇46(𝜇), respectively.
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The above analysis demonstrates that the a posteriori CRE error estimator defined in (56) also accepts a very efficient Offline-Online computa-
tional strategy. In the Offline stage, the terms {𝜓u

i , 1 ≤ i ≤ nu,w}, {𝜎p
k , 1 ≤ k ≤ ñp} and the RB basis functions {𝜙u

n, 1 ≤ n ≤ Nu}, {𝜙𝜎m,1 ≤ m ≤ N𝜎} are
computed first; then all the offline terms (bold typeface in brackets) in (86)–(109) are computed and stored. In the Online stage, for any given 𝜇,
we first solve (39) to get 𝛼𝜃n(𝜇), 1 ≤ n ≤ N𝜃 ; solve (43) to get 𝛼u

n(𝜇), 1 ≤ n ≤ Nu; then solve (55) to obtain 𝛼𝜎m(𝜇), 1 ≤ m ≤ N𝜎 ; and finally assemble all
the remaining terms to compute ΔCRE(𝜇) from (83).

For any given 𝜇, the Online operation count at this stage includes (excluding the Online counts described in section 3.2.1 and section 3.2.2):
O
(

nD(Nu2 + NuN𝜃 + N𝜃2)
)

operations to assemble and compute 𝐑𝐑(𝜇) in (86), O
(
nCN𝜎2) operations to assemble and compute 𝐇𝐇(𝜇) in (97), and

O
(
NuN𝜎 + N𝜃N𝜎

)
operations to assemble and compute 𝐑𝐇(𝜇) in (101)3 Therefore, the Online operation count to evaluate 𝜇 → ΔCRE(𝜇) is also

independent of  u.

Appendix B. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.finel.2017.12.004.
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