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Our newly developed fully Self-Consistent Numerical Discrete Variational Method (which exactly treats all non-
spherical parts of the crystal potential) yields X-ray scattering factors and anisotropies in the Compton profile of

diamond in very good agreement with experiment.

Considerable interest exists in the predictions of
the local density formalism (LDF) [1] on the ground
state properties of solids, e.g. cohesive energies [2],
X-ray form factors {3, 4] and Compton profiles [5].
LDF based calculations are usually beset with the
difficulties of solving self-consistently the associated
one-particle equation characterized by a multi-center
non-spherical potential and hence, a variety of approxi-
mations have been introduced to reduce the complex-
ity of the problem, LCAO-type calculations [4, 5]
have overcome the difficulty of treating non-muffin-tin
potentials and have demonstrated that efficient con-
vergence with respect to the size of the basis set [4]
can be obtained. However, the problem of carrying
this type of calculation or self-consistency (SC) still
remains a formidable task. Although these methods
are capable of yielding reasonable results for the eigen-
values, an accurate evaluation of ground state func-
tionals of the electron density is still non-trivial.

In this paper we apply our newly developed [6]
self-consistent numerical discrete variational method
(DVM) [7] to study the X-ray scattering factors and
directional Compton profile for diamond. All non-
spherical parts of the crystal potential are treated
exactly using an efficient numerical LCAO basis set
and a numerical Diophantine integration scheme.
Local density exchange and correlation are incorpo-
rated directly into the crystal potential and full self-
consistency is obtained. The resulting X-ray form
factors are in good agreement with experiment {8, 9]
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and with previous Hartree—Fock calculations [10].
While the non-SC Compton profile is too high at low
momenta and lacks some high momentum components,
the fully self-consistent results agree very well with
experiment. Unlike the Hartree—Fock results, the
anisotropy of the profile is found to be in reasonable
agreement with experiment.

For the crystal problem, the general potential is
given by

V) = Voou(t) + Fox [Pgup (M) + Foo [0gp M (1)

with the exchange, F.,, and correlation, #, poten-
tials given in terms of the local density functions
written in terms of superposed overlapping atomic
densities, pg,,(r). We use the free-electron plf3 ex-
change potential for F,, and the correlation energy
functional of Singwi et al. [11] as fitted to analytic
form by Hedin and Lundqvist [12]. We do not
spherically average V(r) or linearize the local density
functionals. The crystal wave functions \[J]- (K, r)are
expanded in terms of Bloch functions ®§(K, r) [which
are given in terms of LCAO basis orbitals x;,] . Unlike
previous efforts which used simple analytic basis
functions to overcome difficulties in calculating many-
center integrals appearing in matrix elements (ME)

of V(r), we are able to exploit the variational efficiency
of accurate numerical basis functions because we do
not employ any analytic algorithms for calculating
ME. Thus our x%(r) are determined as numerical solu-
tions of the atomic potential equivalent of eq. (1).
Details of the method, and evidence for the varia-
tional superiority of even a minimal set (e.g., 1s, 2s and
2p) to a double-zeta Slater basis are given elsewhere
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[6], as is a full description of the method of obtaining
crystal solutions. An extended numerical set of 1s, 2s,
2p, 3s and 3p are used in this study.

The initial guess for the ground state crystal density
in our SC procedure is the population-dependent
overlapping-atomic model in which psup(r) is con-
structed as a lattice sum of atomic p,(r) obtained
from the numeric SC solution for atom «. With this
model density, the superposition Coulomb potential
Veab (r) is a sum of one-site Coulomb potentials
derived from p,(r) by solving Poisson’s equation.

Self-consistency is treated in two stages: in stage
one, we perform a charge and configuration self-
consistent (CCSC) calculation by recomputing
{xz(r)} and potential ¥(r) on the basis of a new set
of population numbers so as to minimize, in a least-
squares sense, the deviation 02 between the input
psup(r) and the crystal density, Pery(r):

B0V = pery) — Py, 0*= [y, (@)

We thus optimized our basis set non-linearly (by
recomputing it at each step) so as to allow the xz(r)
to relax to the form of the iterated pcry(r). In the
second stage (full self-consistency), we expand the
residual Ap(r) obtained at the last CCSC iteration in
a Fourier series and compute the correction to the
Coulomb potential due to this Ap(r) as:

AV (r) = —4n KZ) K72 Ap(K,) exp(iK, 7). (3)
0 °

Here Ap(K.), the Fourier components of Ap(r), are
also calculated by a direct three-dimensional Diophan-
tine integration. Note that since Ap(r) cannot be ex-
panded in terms of one-site densities located at the
atomic sites it has been neglected in most of the
previously published SC methods. Because of the
smooth character of Ap(r) (the main localized
features near the core regions having been absorbed
into pg,p(r) in the CCSC step), only the first few

K, vectors need to be considered in eq. (3) in order

to converge the sum — a feature not shared by methods
that treat the full (core + valence) density in a Fourier
representation [4, 5]. To the correction AV ., (r)

we add VgP(r) obtained at the previous iteration

and the exchange and correlation potentials calculated
from p rys(r) and repeat the solution until the changes
in Ap(K,) between successive iterations are smaller
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than 10-4. Only the first 6 to 12 K, vectorsand 24
iterations were needed to converge the SC cycle to this
accuracy. The crystal density is computed at each itera-
tion step by sampling the 6-nearest volume K-points

in the fcc Brillouin zone.

The final charge density is used to compute the
X-ray form factors of diamond, shown in table 1 along
with the experimental values [8, 9] and the crystalline
Hartree—Fock (HF) results obtained with a Gaussian
s/p basis set [10]. Our results using the exchange and
correlation functionals agree quite closely with the
experimental data (an experimental error of 1t0 5
per cent has been extimated). The deviations between
our results, or the H-F results, from experiment are a
non-systematic function of (%, k, /)- contrary to
previous conclusions [3, 13]. The iterations towards
SC improve the agreement with experiment quite
considerably as is seen particularly for the “forbidden™
reflection fy45.

The momentum density is calculated using the
Fourier transformed Bloch function @ﬁ(p). The
Compton profile J(q) is computed in the impulse
approximation from the Kubic Harmonics expansion
of the momentum density [14] (/. <12). Table 2
summarizes and compares our results for the Compton
profile J(g) in the {100] direction to experiment
[15, 16] and to the HF results [17]. Upon iterating
our results to SC, J(q) is lowered at low ¢ and addi-
tional contributions start to appear at high g. We note
that our non-SC results (with & = 2/3 and correlation)
are close to the non-SC analytic Slater basis DVM
results of Seth and Ellis [18] (but with « = 0.70 and
no correlation). Similar increases in the form factors
at low [hkl] (table 1) upon iteration indicates some
build-up in the bonding charge relative to the super-

Table 1
Experimental and calculated X-ray scattering factors for
diamond with f(0, 0, 0) = 6.0.

HF [10]

exp [8]

hkl first last

iteration iteration results results
111 3.071 3.281 3.32 3.29
220 1.982 1.995 1.98 1.93
311 1.792 1.692 1.66 1.69
222 0.0 0.139 0.14 [9] 0.08
400 1.531 1.493 148 1.57

331 1.510 1.605 1.58 1.55
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Fig. 1. Anisotropy ot the [100-111] J(g) in diamond com-
pared with the self consistent Hartree—Fock [SCHF] results
[17} and experiment [15].

position model. The HF results shown in table 2 in-
dicate a lack of sufficient high momentum components
and an overestimate of the profile at low q. Thus our
full SC procedure accounts reasonably well for the
charge redistribution in going from the atomic super-
position to the crystalline results.

Fig. 1 shows the calculated [100] —[111] aniso-
tropy of J(g) in diamond and a comparison with the
SCHF predictions and experiment. Our results do not
peak at low g values; at higher g values, the anisotropy
is considerably lower than that predicted by the HF
theory. Some possible structure in the experimental
data at ¢ =~ 1.0 au is absent in both calculations.

The overall agreement of our results with experi-
ment for both X-ray scattering factors and the Compton
profile gives us some confidence as to the adequacy
of our numerical basis set and self-consistency proce-
dure. Although the eigenvalues of the local density
one-particle equation (band structure) in diamond
change only very little by adding the correlation
potential and employing a full SC procedure, both
the Compton profile and the total ground state energy
are considerably affected by these effects — as will
be discussed in more detail elsewhere.
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Table 2
Experimental and calculated Compton profile in diamond in
the [100] direction.

exp [15] exp[16]

(au) first last HF [17]
iteration iteration results results results

0.0 219 2.05 2.09 2.08 2.18
02 217 2.01 2.07 2.06 2.15
04 2.06 1.93 1.91 1.94 2.05
0.6 1.84 1.75 1.73 1.79 1.84
0.8 1.57 1.52 1.46 1.55 1.55
1.0 1.20 1.28 1.10 1.29 1.22
1.2 0.87 0.96 0.86 0.94 0.88
1.6 046 0.48 0.47 0.45 0.46
2.0 031 0.33 - 0.31 0.29
3.0 0.15 0.19 - 0.18 —
4.0 0.08 0.11 - 0.10 -
5.0 0.04 0.06 - 0.06 -

We are indebted to A. Seth for providing us with
the routine that processes the momentum density.
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