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Phenotypic Variance

We typically discuss phenotypic variance as the sum of independent 
variance components:

VP = VA + VC +VE
Variance can easily be calculated with the standard equation:

This encourages us to thing about the variance components as squared 
quantities :
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When we should be thinking about them differences between MZ and DZ twin 
groups: 

VP = 1 = 2(rMZ – rDZ)  + 2rDZ – rMZ + 1 – (Va + Vc)



Who Cares?

• In most cases the estimates of A, C, and E will be very 
similar

• The problem is that a discrepancy emerges between 
the nominal and empirical Type I Error rate 

• This is overwhelmingly in a conservative direction 
(meaning that you are likely to fail to reject the null 
hypothesis of genetic or common environmental 
variation)



Type I Error Rate in the 
Classical Twin Design

• Type I Error Rate: Probability of rejecting the null hypothesis 
by chance
• Alpha level (0.05)
• In repeated sampling, if a parameter is truly null, we would expect 

to find a significant parameter 5% of the time due to chance alone

• Significance tests for ACE models are traditionally done 
using a Likelihood Ratio Test (LRT)
• 𝚫LL = -2 LL(restricted) - -2 LL(Full) 

• Under certain regularity conditions, 𝚫LL is distributed as 𝟀2(df). 
• Twin Studies violate these regularity conditions by implicitly 

imposing lower boundaries on the variance components estimates



Violations of the Assumptions for 
the LRT

In standard twin models, under the null hypothesis that a 
variance component is zero, this test is distributed as a 
50:50 mixture distribution of 0 and 𝟀2(1). 



The Classical Twin Design 
(Common Specification)
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The Direct Symmetric Specification
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Intuition behind the Problem

Empirical Distribution of MZ Correlations 

 (Simulated at .5)
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Empirical Distribution of DZ Correlations 

 (Simulated at .25)
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Intuition behind the Problem

Empirical Distribution of C if unbounded 

 (Simulated at 0)

Common Environmental Variance Component
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Empirical Distribution of C if bounded 

 (Simulated at 0)
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Adjusting the p-value in the 
Univariate Twin Model

With one variable per twin, to correct the p-value all 
you need to do is divide the p-value that OpenMx
gives by 2 (or test at p = .10)

For bivariate twin analyses, Wu & Neale (2012) 
provide the solution

For more than two variables, it gets tricky



But how bad is the problem?

• We conducted 2 simulation studies to examine the impact of the implicit 
boundaries on the Type I Error rate and parameter bias

Study 1: Simulate a basic multivariate twin model where C was 0 (1 – 4 phenotypes)

• Fit the model using:
• Cholesky Decomposition
• Correlated Factors Model
• Direct Symmetric Model

Study 2: Simulate a Common Pathway model

• Fit the model using:
• Cholesky Decomposition
• Correlated Factors Model
• Direct Symmetric Model
• Independent Pathway Model (IPM)
• Common Pathway Model (CPM)



As the number of variables in the 
model increase, the Numerical and 
Theoretical Type I Error rates diverge



When the Cholesky and Correlated 
Factors models are used to compare 
hypothesis driven models, the 
deviations in the Type I Error Rate 
compound



The lower bound of zero also causes 
bias in the parameter estimates
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The Direct Symmetric Approach will 
ALWAYS fit as well or better than the 
other approaches



Caveat Emptor

• The Unbounded Variance Components may take 
negative (non-sensical) values
• These values will likely suggest some sort of model mis-

specification 

• I.E., You fit an ACE model when you should have fit an 
ADE model

• GxE Models can be very difficult to specify with the 
DSM approach



Conclusions

Implicit and explicit boundaries lead to a deviation 
from the expected Type I error rate and can induce 
bias in the parameter estimates under the null 
hypothesis. 

The fact that the Type I error rate is conservative 
implies that the Type II error rate is inflated. 


