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BACKGROUND & SIGNIFICANCE RESULTS: HABITUATION EFFECTS

RESULTS: MMR     VRISD PREDICTIONS

2. PREDICTING DISCRIMINATION OUTCOMES

OBJECTIVE

METHODS 1. HABITUATION EFFECTS

CONCLUSIONS

The development of speech perception, including speech discrimination, depends partially on 
early exposure to and experience with highly salient and behaviorally relevant acoustic input. Our 
previous research has highlighted the importance of quality sound access for the development of 
speech discrimination in infants as young as one month of age. Specifically, we have demonstrated 
that the speech evoked mismatch response (MMRSE) is modulated by discrimination difficulty and 
may be useful in predicting later behavioral outcomes in infants. However, there is wide variability 
in discrimination outcomes that may affect the utility of MMRSE as a biomarker; for example, the 
absence of a response may not be an accurate indicator of discrimination but a reflection of the still 
developing neural generators for engaging in and completing the task.

We examined the time-frequency representation of the MMRSE (TF-MMRSE) as a function of the number 
of trials elapsed from the last deviant stimulus to determine whether the evoked potential magnitudes 
preceding a deviant trial could predict the identification of a difference response and whether such 
differences might correlate with later behavioral outcomes. 

1a. Trial selection
To examine the effects of habituation on the TF-MMRSE, 
ERP  trials  were binned into three groups based on 
the number of standard trials that had elapsed since 
the previous deviant stimulus. The three habituation 
groups are labeled as short, medium, and long, referring 
to the time or number of elapsed standard trials: 

•  Short (S):        2 - 4 trials
•  Medium (M):  5 - 7 trials
•  Long (L):        8 - 11 trials

Trial bins were created separately for standard and 
deviant trials. After binning the trials, we computed 
the mean TF Coherence response for each set of bins. 

1b. Analysis
We used an extension of classical multidimensional 
scaling known as DISTATIS to test for generalized effects 
of habituation on all responses (i.e.,irrespective of hearing 
group or contrast type). Each set of retained responses 
was transformed into a grammian, or “gram” matrix, which 
is a normalized representation of the spectral-temporal 
covariances in the TF response. A principal component 
analysis (PCA) of the mean grammian was used to identify 
three eigenvectors that, together, explained 82.7% of 
the total variance amongst all responses. These three 
eigenvectors were used to compute weighted scores for

• Two stimulus contrasts: 
 /a-i/ and /ba-da/

• P(deviant) = 0.15
• 0.5s duration per sound
• Pitch matched at 204 Hz
• Equated for loudness
• 70dBA in sound field

Hearing Loss (HL)
• N = 40 
• Age (MMR):  3.4 (0.9) mo
• Age (VRISD):  8.9 (3.9) mo 

Normal Listeners (NL)
• N = 47
• Age (MMR):  3.3 (1.1) mo
• Age (VRISD):  8.3 (1.6) mo 

• Continuous EEG was recorded 
during sleep throughout the 
session
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monitored for wakefulness & 
REM state
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• Final ERPs analyzed from Cz
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each response, 
which were 
then treated 
as dependent 
variables 
for group 
comparison. 
Figure 1 
(left) shows 
a schematic 
illustration of 
the DISTATIS 
approach for 
analysis.

Figure 2 (above) shows the weighted scores for each selected eigenvector, E1, E2, and E3. Each 
panel depicts two trial groups: standard trials (left column group), deviant trials (center column 
group), and their differences (deviant minus standard, right column group). Each column group 
depicts the weighted score for each of three habituation groups: short (blue bars), medium (red 
bars), and long (gold bars). The arrows over each of the standard groups are schematic and are 
plotted to highlight the observed habituation effects. Note that while E1 and E3 clearly demonstrate 
habituation of the standard trials, the effect in E2 appears to be driven by the deviant trials.

Figure 3. Spectral and temporal projections 
for each selected eigenvector, E1, E2, and 
E3. Each panel depicts two trial groups: 
standard trials (top row) and deviant trials 
(bottom row), and each habituation group: 
short (blue lines), medium (red lines), and 
long (gold lines).

Figure 4. Time-frequency (TF) component 
projections for each selected eigenvector, E1, E2, 
and E3. Each panel depicts two trial groups: standard 
trials (top row), deviant trials (middle row), and their 
differences (deviant minus standard, bottom row), 
and each habituation group: short (left column), 
medium (center column), and long (right column).

Figure 5 (above) shows VRISD prediction weights 
and predicted score classes. The left panel depicts 
the weighted eigenscore (abscissa) as a function of 
the target eigenscore (ordinate) for each TF-MMRSE 
response. The right panel depicts classification 
accuracy for all responses. The values shown at the 
top and right of each class segment are the median 
VRISD scores for the corresponding target class (row 
or column). The radius of each circle is proportional 
to the number of observations at the corresponding 

These results revealed a habituation effect corresponding with the time elapsed from the last deviant 
trial and changes in the frequency and magnitude of the TF-MMRSE. These results also revealed a 
significant correlation between the TF-MMRSE response and later VRISD scores. Taken together, 
these results suggest that acoustic audibility and salience are both necessary but not sufficient for 
speech discrimination and that discrimination is dependent on the brain’s ability to recognize and 
adapt to complex stimulus patterns.

2a. Testing behavioral discrimination
To examine whether scaled TF-MMRSE responses might be predictive of later behavioral 
performance, each subject was administered the Visual Reinforcement Infant Speech 
Discrimination test (VRISD) approximately 6 months after EEG testing. The VRISD PC Max 
score for each subject and contrast was treated as the dependent variable in a pattern 
classification analysis. VRISD scores were grouped into six groups based on the PC Max 
scores (see Figure 5). The goal of the classifcation algorithm was to predict individual VRISD 
scores from the corresponding TF-MMRSE grammian matrix.

2b. Classification analysis
The grammian matrix for each TF-MMRSE response (deviant minus standard; all trials) was 
treated as the predictor variable in a classification analysis of the corresponding VRISD score. 
We applied a semi-supervised learning algorithm extended from the family of multiclass 
support vector machine (SVM) algorithms. The goal of this algorithm was to find a set of weights 
that, when multiplied by a given grammian, results in a score that predicts membership in one 
of the six VRISD score groups (i.e., the closest median score from each group). Results of the 
classification algorithm were compiled in a contigency table and were tested for significance 
using the Chi-square test for independence of groups.

coordinate position (predicted vs target).
Figure 6 (right) shows the classification 
results parsed by speech contrast (upper 
panels) and by hearing group (lower 
panels).
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