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ABSTRACT
We present a fast and simple algorithm to detect nascent
RNA transcription in global nuclear run-on sequencing
(GRO-seq). GRO-seq is a relatively new protocol that cap-
tures nascent transcripts from actively engaged polymerase,
providing a direct read-out on bona fide transcription. Most
traditional assays, such as RNA-seq, measure steady state
RNA levels, which are affected by transcription, post-trans-
criptional processing, and RNA stability. A detailed study
of GRO-seq data has the potential to inform on many as-
pects of the transcription process. GRO-seq data, however,
presents unique analysis challenges that are only beginning
to be addressed. Here we describe a new algorithm, Fast
Read Stitcher (FStitch), that takes advantage of two pop-
ular machine-learning techniques, a hidden Markov model
(HMM) and logistic regression to robustly classify which re-
gions of the genome are transcribed. Our algorithm builds
on the strengths of previous approaches but is accurate, de-
pendent on very little training data, robust to varying read
depth, annotation agnostic, and fast.

Categories and Subject Descriptors
I.2.1 [ARTIFICIAL INTELLIGENCE]: Applications and
Expert Systems—Medicine and science
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1. INTRODUCTION
Almost all cellular stimulations trigger global transcriptional
changes. To date, most studies of transcription have em-
ployed RNA-seq or microarrays. These assays, though pow-
erful, measure steady state RNA levels. Consequently, they
are not true measures of transcription because steady state
levels are influenced by not only transcription but also RNA
stability. Only recently has a method for direct measur-
ment of transcription genome-wide become available. This
technique, known as global run-on sequencing (GRO-seq),
simultaneously detects the amount and direction of actively
engaged polymerases at every position within the genome[7].
GRO-seq has already drastically influenced our understand-
ing of the transcription process, as most of the genome is
transcribed but rapidly degraded.

The earliest and most common approach to GRO-seq anal-
ysis is annotation centric[7, 22, 17, 14] and only two efforts
have attempted to identify regions of active transcription
directly from GRO-seq data[2, 11]. The first of these ap-
proaches used a two state Hidden Markov model that was
parametrized based on available annotations[11]. This ap-
proach has the advantage of calling large contiguous re-
gions as transcribed, but fails to call many unannotated re-
gions because their length and transcription levels do not
mimic well annotated regions. The more recent approach,
called Vespucci, uses a sliding-window (specified by two user-
dependent parameters) that joins transcripts together based
on read depth, but requires the user to tune the algorithm
with each new dataset[2]. The windowing scheme, in prin-
ciple, has the benefit of not depending on annotation, how-
ever, in practice, regions of transcription are often broken
into discontiguous sections, requiring the use of annotations
to improve their strategy[2].



The design of our software is largely motivated by both the
strengths and shortcomings of these previous efforts[11, 21,
2]. In particular, we propose a fast and robust method
that takes advantage of a logistic regression classifier em-
bedded within a hidden Markov model as a means of learn-
ing non-linear decision boundaries that classify regions of
active nascent transcription[19]. Such an algorithmic tech-
nique shares a similar structure with a Maximum Entropy
Markov Models[19]. Thusly, our methodology allows for pa-
rameters to adapt on the fly to new data. It is annotation
agnostic, effectively identifies cohesive regions of active tran-
scription, has a rapid runtime, and is easily parameterized
by providing a small number of training examples.

2. MATERIALS AND METHODS
2.1 Algorithm Description
The GRO-seq technique measures nascent transcripts pro-
duced from actively engaged polymerase. Because splicing
has not yet occurred, each transcript covers a contiguous re-
gion of the underlying genome, reflecting the extent of poly-
merase activity. Sequencing reads obtained from the GRO-
seq protocol represent a sampling of the underlying tran-
scripts in proportion to their relative abundances. Ideally,
overlapping reads could be merged into contigs, or regions
of continuous read coverage, defining regions of active tran-
scription. But because of uneven sampling, read coverage
within active regions may not be continuous. Furthermore,
the sequencing and mapping process is noisy, therefore reads
can also map to inactive regions.

Transcription can be modeled as a discrete time-series in-
dexed by genomic coordinates where transcriptional activ-
ity of adjacent base-pairs are correlated. Similar to prior
models of GRO-seq[11], we model this process as an ergodic
first-order Markov chain where transcription oscillates be-
tween active and inactive states. Unlike previous models,
which classify individual nucleotides, our model emits from
each state a contig representative of an active or inactive
region (Figure 1). Each contig can be described by two
feature classes: contig length (maximum length of overlap-
ping reads) and contig coverage statistics (Table 1). Active
states, in general, contain a combination of long regions with
high signal interspersed with short regions of relatively no
signal. Hence our HMM framework allows for the classifica-
tion of a continuous active region, containing one or more
contigs, despite the variability in coverage of individual nu-
cleotides that is inherent in short read sequencing data.

Many of the features of contigs are dependent on sequencing
depth of a particular experiment. Therefore, we must learn
the emission and transition probabilities of each state from
a user provided training set. In our case, the training set
corresponds to regions of active and inactive transcription.
Given a training set, we learn the conditional probabilities of
a state classification from the set of implicit feature vectors
using logistic regression. These logistic regression predic-
tors are interpretable as probabilities, and therefore easily
embedded into our Markov chain as emissions. After the
probability transitions of the underlying Markov chain have
been estimated, the well-known decoding algorithms such
as Viterbi and Forward/Backward can be used to infer the
most probable state sequence.

Figure 1: Contig length and coverage statistics dis-
criminate active from inactive nascent transcription.
A contig (blue) is defined by the length of overlapping reads
x1 in Table 1. Coverage statistics define mean, median,
mode and variance of reads (black bars) across a contig.
In places where there are no reads, a gap (green) is defined
by a negative length value and all contig coverage statistics
are set to zero.

2.2 Datasets
This study takes advantage of three previously published
GRO-seq datasets: MCF-7 [11], IMR90 [7] and HCT116[1]
as well as two previously published ChIP-Poll II datasets:
HCT116[13] and MCF7 [15]. For each experiment, raw reads
were mapped and aligned to the hg19 genome using Bowtie2
with the command bowtie -S -t -v 2 -best[16]. ENCODE
provided H3K27ac and DNAse peak calls for IMR90 [21, 6],
MCF7 [9, 12] and HCT116 [9, 24] as well as ChIA-PET peak
calls for HCT116[10].

We hand annotated the entire length of chromosome 1 in the
GRO-seq dataset from HCT116[1] to perform k-fold cross
validation. For all testing, 95% of the labeled dataset was
removed from training and used to asses model accuracy. To
be clear, the entire labeled HCT116 training data contains
17,776 labeled active regions. In both the IMR90 and MCF7
GRO-seq datasets, 7 regions considered active and 7 regions
considered inactive were labeled for parameter estimation.
These training sets with genomic coordinates and labels are
freely downloadable at http://dowell.colorado.edu.

2.3 Parameter Estimation
Both the Markov model transition probabilities and the con-
ditional state emission probabilities are estimated via a user
defined, labeled training set. Given that read mapping can
be noisy and nascent transcripts can be present at very low
levels, estimating the parameters that define transcription
from those describing read-mapping poses a difficult prob-
lem. To this end, the algorithm requires a small training
dataset, provided by the user, in which regions of the genome
are defined as either active or inactive. We show in section
3.1 that little training data is needed to retain high model ac-
curacy. Intuitively, we define model accuracy as the fraction
of base pairs where the user-label and classification-label
agree.

Here we outline our logistic regression parameter estimation
method, for a detailed exposition see Ohno-Machado’s re-
view [8]. We estimated the conditional probability p(k | ~x),
where k∈{inactive, active} and ~x indicates our feature vec-
tor, via a labeled training set of defined genomic coordinates
representing active or inactive transcription. Explicitly, Ta-
ble 1 provides a complete description of the feature vector

http://dowell.colorado.edu


Table 1: Feature vector ~x associated with a contig.
yi equals the read count at the ith position between [t,t+l],
where t is the genomic start of the contig and l its length.
Feature vector dimensions are ordered by importance via
recursive feature elimination.

~x-dimension formalism description
x0 1 bias term
x1 l contig length

x2
∑t+l
i=t yi total count

x3
1
l

∑t+l
i=t yi mean count

x4 median(yt, ..., yt+l) median count
x5 max(yt, ..., yt+l) max count
x6 min(yt, ..., yt+l) min count

x7
1
l−1

∑t+l
i=t(yi − x3)2 count variance

~x. Clearly, p(inactive | ~x) = 1 − p(active | ~x). We express
this probability as the sum of ~x weighted by some parameter

vector ~θ. To treat this linear function as a probability, we
bound the sum to the range [0,1] via the sigmoidal transfor-
mation as follows:

p(active |~x)=
1

1 + e−(x0θ0+x1θ1+...+xnθn)
=

1

1 + e−~x·~θT
(1)

A simple plot of two features, contig length (x1) and average

Figure 2: Read coverage features are not linearly
separable.
Points colored blue represent training examples labeled ac-
tive and those colored red indicate training examples la-
beled inactive. The green shade represents regions of the
2-D space that would be given a higher conditional prob-
ability to active, white inactive. (A) Uses a linear kernel
function whereas (B) use a second-order polynomial kernel
function specified in equation 2.

read coverage (x3), shows that these features may not be
linearly separable (Figure 2A). Because of this, we employ a
polynomial kernel (equation 2) to learn non linear decision
boundaries (Figure 2B),

f(~x, ~θ) = (~x · ~θT + c)d (2)

The polynomial kernel function parameters c and d can be
set by the user in the FStitch software package. The kernel

function is incorporated into the sigmoidal transformation
as follows:

p(active | ~x) =
1

1 + e−f(~x,~θT )
(3)

To maximize training and classification accuracy, the algo-
rithm adjusts to the behavior of the feature space. The use
of a simple second-order polynomial kernel (d = 2 and c =
0) increases the training accuracy by ∼10% in the HCT116
GRO-seq dataset (Figure 5). Importantly, this ∼10% in-
crease reflects mostly lower expressed labeled transcripts
suggesting that the use of the polynomial kernel allows for
greater sensitivity to under-represented, lowly transcribed

genes. To estimate the parameter vector ~θ we maximize the
log-likelihood function of the training set D :

l(~θ,D) =

n∑
i=1

log p(ki | ~xi) (4)

Here D can be thought of as a N×(n+1) matrix where N is
the number of training examples and n+1 is the dimension
of our feature vector ~x . ki equals the ith training label,
which is either active or inactive.

We use the Newton-Raphson method[5] to iteratively up-

date ~θ until convergence. Because this techniques utilizes a
second-order Taylor series approximation to the log-likelihood
function, convergence is usually fast. The update rule is:

~θ t+1 = ~θ t −H−1l(~θ,D) · ∇l(~θ,D) (5)

Here Delta (∇) represents the gradient operator and H the
Hessian operator. Finally, the most probable state sequence
is estimated via the Viterbi Algorithm[23] and given by the
recurrence relation:

vt(k) = max
j∈S

(vt−1(i) · aj→k) · p(k | ~x) (6)

where aj→k represents the transition probability from state
j to state k of the underlying Markov chain, which is es-
timated via Baum-Welch[19], S is the transcriptional state
space {active, inactive} and p(k | ~x) is given and learned
independently in equations (4–5).

Learned parameters via trained data allow users to intu-
itively provide regions of transcriptional characterization the-
reby doing-away with arbitrary parameter values and grid
parameter search for optimization. These parameters are
learned from the data and thus adapt accordingly.

2.4 Detecting Enhancers as Divergent Tran-
scription

Recent work indicates that enhancers are often transcribed,
producing unstable transcripts that are detectable by GRO-
seq[26]. Indeed, enhancers show a characteristic bidirec-
tional transcription signature within GRO-seq data[21]. Only
one analysis approach has, thus far, tried to leverage this
bidirectional signal towards the de novo discovery of en-
hancers from GRO-seq signal[21]. A Naive Bayes classifier
was trained on annotated regions in order to label unan-
notated 2kb windows as bidirectional, single stranded tran-
scription, or non-transcribed[21].

Therefore, we asked whether our FStitch approach could be
extended to detect enhancer RNAs (eRNAs) in an unbiased



Figure 3: eRNA prediction Interval.
FStitch active calls that overlap both an H3K27ac and DHS
chromatin marker were isolated on sense and anti-sense
strand. Sense and anti-sense strand calls are paired to their
nearest neighbors. The difference between the start of the
positive strand call and the negative strand call are shown
here. A Positive value corresponds to overlap and negative
to separation. The green line is a fitted normal and the red
indicates data points within two standard deviations.

fashion. Conceptually, our algorithm could ask for overlap-
ping transcription calls between the positive and negative
strand as potential eRNAs similar to the Naive Bayes ap-
proach. However, it is unclear that all eRNAs show some
overlap between the divergent transcripts as opposed to just
relatively close proximity. Furthermore, many genes have
long non-coding RNA transcripts which move anti-sense to
a transcribed gene indicating that a simple overlap is not
stringent enough a criterion for eRNA prediction. Because
we are detecting bidirectional transcription, we expect also
to find the 5’-end of many genes.

Therefore, we sought to examine the extent to which two
transcripts must overlap or be adjacent in order to accu-
rately annotate eRNAs. Using our chromosome 1 manu-
ally annotated dataset, we examined the overlap of these
regions to both a DNA hypersensitivity site (DHS) and a
H3K27ac mark, both indicators of enhancer activity. We
then computed the distance to the nearest anti-sense FStitch
call (Figure 3). We note that the displacement data show a
Normal distribution. Therefore, we call a bidirectional sig-
nal where two anti-sense transcripts are within some num-
ber of standard deviations of the fitted Normal distribution.
Furthermore, the confidence of bidirectional predictions can
be adjusted by the user. In our subsequent analysis, diver-
gent transcript analysis utilized a confidence interval of two
standard deviations, i.e. -1.5kb to 2.25kb (Figure 3).

2.5 Algorithm Input and Output
The goal of the proposed algorithm is to segment the genome
into areas of active and inactive nascent transcription and,
user-friendliness was a large consideration in the design and
structure of the software. FStitch accepts as input a Bed-
Graph file of read coverage and a training set file consisting

Figure 4: FStitch output.
The output of two Bed files are visualized within IGV show-
ing a sub-region in chromosome 1. The first track shows
typical GRO-seq data from the HCT116 dataset, the pos-
itive strand in blue, the negative strand in red. RefSeq
annotations are shown next. FStitch output is below for
each strand. Green indicates areas of inactive transcrip-
tional activity, blue represents areas of active transcription
along the positive strand and red along the negative strand.
Scores are associated with each classification via the Logis-
tic Regression and Viterbi-provided Markov state sequence.
Bidirectional predictions are provided with a score via the
estimated Normal Distribution confidence interval.

of a few segments (at least 3 segments) considered active
versus inactive regions of nascent transcription. The train-
ing file requires only start and stop coordinates of regions
considered active and inactive yet within these regions the
data is rich in feature vectors (i.e. contig lengths and cover-
age statistics). As such the software design necessitates little
input by the user while harnessing many training examples.
FStitch has pre-labeled active and inactive segments based
on house-keeping genes and gene desert regions, respectively.
The user may opt for these default regions, however, care
must be taken with these assumptions as the transcriptional
landscape varies from experiment to experiment.

FStitch outputs two bed files (positive and negative strand
classifications respectively) that can be imported into typical
genome browsers (such as IGV or UCSC genome browser)
to view the classifications in conjunction with read cover-
age files. Figure 4 shows a typical output of the algorithm.
These bed files contain the genomic start and stop of each
classification and an associated probabilistic score from the
Viterbi algorithm. Finally, the user may ask for divergent
transcription predictions, as these are likely candidate eR-
NAs or 5’-ends of genes. From start to finish, FStitch takes
∼3.5 minutes to predict transcript annotations in the most
deeply sequenced GRO-seq dataset, HCT116[1].

2.6 Software Availability
FStitch is written in the C/C++ programming languages
and is complied using GNU compilers later than GCC 4.2.1.
The user interface is command line, resembling many popu-
lar bioinformatics pipelines. FStitch is stand-alone and bor-
rows from no third-party platforms, libraries or packages.
The open-source software and a comprehensive manual is
freely downloadable at http://dowell.colorado.edu.

http://dowell.colorado.edu


3. RESULTS
We present a fast and simple algorithm to detect nascent
RNA transcription in GRO-seq that is annotation agnostic
and robust to low read depth. This section is loosely divided
into four categories: (1) algorithm performances and bench-
marking, (2) RefSeq and previous technology comparisons,
(3) validating bidirectional predictions as enhancer RNAs.

3.1 Sensitivity to depth of data
To assess the sensitivity of the algorithm to the amount of
available training data, the authors hand curated the entire
length of chromosome 1 in the HCT116 dataset. Regions
were labeled as active-nascent or inactive-noise. Given this
rich collection of labeled data, we performed K-fold cross
validation. To this end, we reserved 5% of the training data
for parameter estimation, 95% for testing accuracy. To as-
sess the amount of training data needed for accurate test
accuracy scores, we incrementally decreased the amount of
training data.

Figure 5: FStitch requires little training data and is
robust to low levels of GRO-seq read coverage.
(A) Graph of accuracy of classification given successively
decreasing amounts of training data utilized to learn feature
vector weights. (B) Graph of accuracy of classification given
successively smaller sequencing depth (dataset size). In this
case, we trained on 5% all available chromosome 1 labels and
tested on subsamples of the original dataset (50 different
subsamples of the test set). TP = true positive rate(blue)
and FN = false negative rate(green). The utilized kernel
is indicated (polynomial(d=2 and c=0) and linear(d=1 and
c=0)).

Figure 5A shows that training is robust to successive de-
creases in the amount of training data utilized, suggesting
that very little training data is needed to achieve relatively
high levels of testing accuracy. The smallest successive de-
crease (0.1%) of the initial training dataset consists of 3
active and 2 inactive regions and maintains scores of 95%
true positive and 4.3% false negative relative to the testing
dataset.

Similarly, we assessed the sensitivity of FStitch to experi-
mental sequencing depth, a rough measure of data quality.
To this end, we randomly subsampled (without replacement)
from the HCT116 dataset (the single experiment with the

Table 2: Benchmarking FStitch and Vespucci
Each algorithm (FStitch, Vespucci with default parameters
and Vespucci with best parameters from a grid search, G.S.)
are compared to the manually annotated test set from chro-
mosome 1 per base.

FStitch Active Label Inactive Label
Active Call 98.5% 1.5%
Inactive Call 0.01% 99.99%
Vespucci (default)
Active Call 60.7% 30.3%
Inactive Call 6.03% 93.97%
Vespucci (G.S.)
Active Call 80.1% 19.9%
Inactive Call 0.56% 99.44%

deepest read coverage). We subsampled the original dataset
leaving out increasing amounts of the original dataset and
re-estimated the parameters via the same training set seg-
ments. Subsequently, we reclassified active transcript seg-
ments and calculated training accuracy relative to the test
set. Figure 5B shows that FStitch is robust to low sequenc-
ing depth of the dataset.

3.2 Benchmarking FStitch & Vespucci
We sought to evaluate our algorithm, FStitch, to the pre-
viously published windowing method Vespucci[2]. Using
our hand curated test set (chromosome 1), we calculated
model accuracy for Vespucci with the default parameters
(Max Edge: 500 and Density Multiplier: 10,000) relative
to our HCT116 test dataset (Table 2). In addition, we per-
formed a grid search on a subset of ranges for both Max Edge
and Density Multiplier combinations and reported the per-
formance of the best (Max Edge: 10 and Density Multiplier:
2,000) parameters obtained for this dataset.

We asses the quality of the predictions to independently de-
rived relevant biological datasets. As GRO-seq measures all
actively engaged polymerase, in a strand specific fashion,
there is no single alternative experiment to confirm all of
GRO-seq data. However, most transcribed regions are tran-
scribed by RNA polymerase II and therefore comparison to
Pol II ChIP-seq should independently verify the location
of transcripts. To this end, we obtained Pol II ChIP-seq
data for both MCF7 and HCT116 cell lines [13, 15]. Unfor-
tunately, comparisons between GRO-seq and ChIP-seq are
complicated as GRO-seq is strand specific whereas ChIP-
seq is not. Yet, we reasoned that the summation of reads
along the sense and anti-sense strand should approximate
ChIP-Pol II read coverage within the same region.

Thusly, an active call should have a higher enrichment of
RNA Pol II ChIP-seq than an inactive call. In both the
HCT116 and MCF7 cell lines, we made divergent transcrip-
tion, active and inactive annotations. Vespucci does not
contain an unbiased divergent transcription annotator, there-
fore only active and inactive predictions are available. For
MCF7 we utilized the published list of Vespucci annotations
but for HCT116 we used the Vespucci parameters via grid
search (Table 2). We note that the Vespucci approach is



less capable of distinguishing active from inactive regions as
assessed by Pol II occupancy(Figure 6). We observe a statis-
tically significant enrichment (Kolmogrov-Smirnov test) for
Pol II occupancy between active and inactive FStitch re-
gions. Indeed, we observe a high degree of Pol II occupancy
at divergent transcription calls.

Figure 6: Correlation of GRO-seq transcript calls
with Pol II ChIP-seq.
Poll-II read density was collected in regions annotated ei-
ther as divergent transcription, active or inactive by either
FStitch or Vespucci. Blue, green and red represent bidi-
rectional, active and inactive calls respectively. Log fold-
enrichment is relative to average Pol-II read density. Statis-
tical significance is assessed via the Kolmogrov-Smirnov test
(significance bars colored by p-value). Error bars indicate
one standard deviation away from the mean.

3.3 Annotation Comparisons
We next sought to evaluate the performance of our algo-
rithm on identifying biologically meaningful regions of ac-
tive transcription by comparing the results of FStitch to
RefSeq annotations. We first classify our active transcript
calls by a wide variety of databases containing genomic an-
notations. Most FStitch active calls overlap a known anno-
tation: gene, long non-coding RNA (lncRNA), small nucle-
olar RNA (snoRNA), microRNA (miRNA), transfer-RNA
(tRNA) and/or Retroposon annotations (Figure 7). Inter-
estingly, many of the miRNA and snoRNA annotations are
downstream of a bidirectional transcription call (e.g. Figure
4). Of the FStitch active calls that do not overlap known
annotations, many (most of the 57.3%) can be described as
bidirectional calls that overlap an H3K27ac mark; charac-
teristic of an eRNA.

However, 20% of these unknown active calls contain an open
reading frame that spans 60% of the length of the call and
contain a bidirectional call at the 5’-end. These may be

Figure 7: Active Call Characterization.
FStitch active calls are divided into classes based on previ-
ous genomic annotations. An active call is only assigned if
it overlaps 95% of a previous annotation’s length. Unanno-
tated active calls are assigned if they overlap no previous
annotations on either the positive or negative strand. Only
1% of FStitch either partially overlap a gene annotation and
thus are considered neither unannotated or previously de-
scribed. FStitch made 36,033 active annotations.

unannotated protein coding genes. We translated these re-
gions and searched the UniProt/SwissProt database, uncov-
ering several hits. We then isolated the statistically signifi-
cant hits and tokenized the hit descriptions. More than 50%
of all hits contained the reoccurring words putative, unchar-
acterized or encode.

Meta-gene analysis is a popular method of assessing the av-
erage behavior of an assay over gene annotations. It should
be noted that the 3′-end of a gene annotation is the mRNA
cleavage site and is not the RNA Pol-II termination site.
Previous studies utilizing a Meta-gene over gene annota-
tions detect a small peak of reads at the 3′-end in GRO-seq
datasets[21]. However, this 3′ peak does not always cor-
relate well with the exact 3′-end of the annotation likely
because the annotation was not the Pol-II termination loca-
tion[3]. Taking advantage of the high read coverage of the
HCT116 GRO-seq dataset, we examined FStitch active calls
that completely overlap a RefSeq annotation (n=2512) and
averaged the read coverage within 100 uniformly distributed
proportions (Figure 8) relative to the FStitch call.

This uncovered two important features of active regions: (1)
the 3′-end peak is much larger than previously detected and
(2) there is a corresponding small build up of reads along the
anti-sense strand that mirrors the 3′-end peak. Given our
algorithm does not rely on previous gene or enhancer an-
notations, we ask how FStitch active calls relate to known
RefSeq gene annotations (Figure 9). Specifically, we mea-
sure the difference in genomic location between the end of
an active call and the nearest RefSeq annotation, for both 5′

and 3′-ends. Importantly, we see a roughly 10kb elongation
of GRO-seq signal past the 3′-end of annotated genes (Fig-



Figure 8: Average Read Coverage of FStitch active
calls.
FStitch active calls on the positive strand that completely
contain a Refseq annotation were used to calculate the aver-
age behavior. Blue represents positive strand coverage and
red represents negative strand coverage. For each active
region, read coverage was binned into 100 uniformly sized
proportions.

ure 9B); consistent with the fact that polymerase proceeds
far beyond the mRNA cleavage site [4].

Additionally, GRO-seq signal often begins upstream of an-
notated 5′ start sites of annotated Refseq genes (Figure 9A).
Indeed, there appear to be two distinct populations within
the 5′ starts. Therefore, we fit a mixture of two Gaus-
sian distributions using the Expectation Maximization algo-
rithm[20] to the 5′ histogram of active calls. We then exam-
ined the upstream Gaussian distribution for distinguishing
features and found it shows a 2.5 fold enrichment of anti-
sense transcription compared to the Gaussian centered at
roughly the zero position. We suggest that many genes may
have nearby overlapping upstream enhancers, which typi-
cally shows bidirectional transcription.

We then compared our correspondence to Refseq annota-
tion to that of previously developed GRO-seq de novo tran-
script detection algorithms[11, 2]. The Vespucci algorithm,
captures many of the same general trends of FStitch. But,
on average, the Vespucci algorithm terminates 3′ extensions
earlier than FStitch. Upon further examination, this may re-
flect that Vespucci’s default parmeters are biased to highly
expressed contigs and the 3′ extensions are often weakly
transcribed. Hah’s HMM was trained to match Refseq anno-
tations and therefore is unable to identify the distinguishing
features of nascent transcription at either end.

3.4 Characterizing bidirectional RNA
Activity

Given that we have confidence intervals for the extent and
length of overlap of bidirectional peaks many of which are
eRNA events, we next sought to assess the accuracy of these

Figure 9: Histograms comparing the active region
calls of FStitch to Refseq annotations.
We plot the distance between an active call and the nearest
Refseq annotation for (A) 5′-ends; (B) 3′-ends; Colors red,
blue and green are Hah, Vespucci (grid search parameters)
and FStitch transcript annotations respectively.

predictions genome-wide. Excluding chromosome 1 (as this
was our training set), we used FStitch to predict bidirec-
tional transcription on all three cell lines: IMR90, MCF7
and HCT116. First, for each cell line we asked for the num-
ber of bidirectional peaks overlapping a DHS or H3K27ac
mark (Table 3). In all cell lines, the bidirectional FStitch
calls were significantly enriched, by hypergeometric test, for
DNAse and H3K27ac marks indicating that a large fraction
of these calls are likely eRNAs.

We hypothesize that bidirectional predictions that overlap
enhancer marks will be highly transcribed, moreso than bidi-
rectional predictions without corresponding enhancer marks
(Figure 10). In all three cell lines, we see higher levels of
bidirectional expression when accompanied by a chromatin
enhancer mark. As proof of concept, marks which do not
overlap bidirectional prediction show little read density in-
dicating that our False-Negative rate is low. Bidirectional
predictions that overlap both a gene annotations and an en-
hancer mark show the highest level of average expression.
Moreover, we predicted 342, 241 and 198 bidirectional phe-
nomena in the HCT116, MCF7 and IMR90 datasets, respec-
tively, that do not overlap a chromatin enhancer mark but
do show a GRO-seq expression greater than the mean GRO-
seq signal of bidirectional predictions overlapping a DNase
or H3K27ac mark. We believe some of these may as of yet
be undiscovered enhancers.

Next, we examined the theory in gene regulation that asserts
that enhancer elements are three-dimensionally connected to
their gene regulatory partner. To compare GRO-seq signal
with three-dimensional chromatin interactions, we utilized
a chromatin interaction analysis by paired-end tag sequenc-
ing (ChIA-PET) dataset in the HCT116 cell line[18]. ChIA-
PET is an exciting new high-throughput technique that pulls
down a protein of interest (in this case Pol II) and provides
genomic sites on long range chromatin interactions[10]. We
first confirmed overlap between FStitch active calls and bidi-



Table 3: Evaluation of bidirectional predictions as
eRNAs
On the diagonal are total events in this category. The in-
tersection of a row and column indicates the total overlap
between these events. Significance of the overlap was as-
sessed by hypergeometric and p-value are indicated as fol-
lows: §10−3 , †10−4 , ‖10−8, ‡10−9

IMR90 bidirectional DNAse H3K27ac
bidirectional 5,177

DNAse 1,892§ 140,803

H3K27ac 1,874‖ 20,673 57,623

MCF7
bidirectional 10,536

DNAse 4,154† 152,768

H3K27ac 4,554‡ 13,673 32,516

HCT116
bidirectional 14,738

DNAse 6,750† 114,060

H3K27ac 2,417§ 13,769 57,623

Figure 10: Bidirectional calls overlapping enhancer
marks are highly transcribed
We posit that bidirectional calls that overlap enhancer
marks will show strong signatures of expression. Color De-
scription: blue: bidirectional Prediction (All), green: Active
Call; red : Inactive Call, army green: bidirectional Predic-
tion + H3K27ac + Promoter Association, teal : bidirectional
Prediction + H3K27ac + non-promoter association, purple
H3K27ac + no bidirectional Prediction

rectional predictions with ChIA-PET sites. We see a highly
significant overlap (hypergeometric; p-value < 10−10) be-
tween ChIA-PET calls and predictions made by FStitch.

Figure 11: bidirectional predictions and active
FStitch calls connected by a ChIA-PET call show
correlated GRO-seq expression.
The GRO-seq expression level of ChIA-PET peak pairs that
overlap a bidirectional Call and an active call on either end
are plotted, demonstrating a strong correlation (ρ = 0.8301)
in expression (as measured by GRO-seq) between the ChIA-
PET pairs. Points are color according to genomic dis-
tance(KB) between bidirectional prediction and active call.

Given the three dimensional association implied by ChIA-
PET, we next sought to ascertain if interacting chromatin
sites show a correlated GRO-seq expression signal. When
assaying for GRO-seq signal utilizing only ChIA-PET peak
pairs, we report no correlation in expression (Pearson’s cor-
relation coefficient; ρ of 0.001). However, when we isolate
ChIA-PET pairs that overlap both a bidirectional prediction
and an active FStitch call on either end, we see a strikingly
high correlation (ρ of 0.8301; Figure 11). For this analysis
we do not take into account bidirectional predictions that
overlap the same active FStitch call. Moreover, this lin-
ear relationship is completely independent of genomic dis-
tance. Figure 11 poses an obvious question: can we predict
enhancer-gene interactions? Via a general linear model es-
timated from Figure 11, we attempted to predict enhancer-
gene interactions using only GRO-seq expression level, how-
ever, only 7% of enhancer-gene interaction predictions were
validated by ChIA-PET calls. This result suggests addi-
tional information is needed to create a true enhancer-to-
gene predictor.

4. DISCUSSION
We present a fast and robust GRO-seq transcript annotator
that is completely annotation agnostic. Parameters of the al-
gorithm are learned from small amounts of training data and
can adapt readily to even low depth of sequencing. By taking
advantage of Logistic Regression we can learn a non-linear
classification of the feature space. By then embedding this
classifier within a Hidden Markov model framework, we are
able to annotate clean, contiguous segments of active tran-
scription. Our algorithm identifies regions of active tran-
scription that correspond well to independently obtained



secondary datasets such as Pol II ChIP-seq and ChIA-PET.
Furthermore, we can readily identify bidirectional RNAs
(many likely to be enhancer RNAs) within GRO-seq data
with high accuracy. FStitch is user friendly and fast, with
classifications easily viewed on common genome browsers
(IGV or UCSC genome browser).

In conjunction with this software release, we uncover excit-
ing new biological phenomena. We show on a systems-wide
scale that gene transcription progress much farther than the
3′-end of the mRNA cleavage site. We make many unan-
notated transcript discoveries that relate either to protein
coding regions or unseen enhancer events. A meta-analysis
of active FStitch calls shows that the 3′-end antisense and
sense signal is much larger than previously appreciated. Ad-
ditionally, we see a strong correlation between bidirectional
predictions bearing one of the known histone marks (DNAse
or H3K27ac) and higher transcription levels. We see that
chromatin interactions identified by ChIA-PET are almost
always transcribed. And most excitingly, we see that chro-
matin interactions that overlap a bidirectional and FStitch
active calls are transcribed at the same level; further evi-
dence of enhancer-to-gene interactions.

A curious user might consider extending FStitch to other
high throughput read mapping datasets. As the only input
to FStitch is a genome bed coverage file and training set,
FStitch is not technically specific to GRO-seq data. This
method may bare relevance where contiguous regions of high
dense read coverage wish to be isolated; characteristic most
notably in ChIP-seq Pol-II datasets. Indeed, the relevance
of this algorithmic structure to ChIP-seq peak calling should
be explored further.

An exciting extension of the work posed here might be the
addition of an extra dimension towards the computational
prediction of gene-enhancer interactions. Previous work has
utilized DNA transcription factor binding motifs, chromatin
marks and chromatin accessibility to predict putative en-
hancer events[25]. Coupled with the result that bidirectional
and active FStitch calls correlate with three dimensional be-
havior of chromatin interactions, one might build a rich and
interesting model to combine transcription factor binding
motifs, chromatin marks and bidirectional FStitch predic-
tions with similar GRO-seq expression profiles.

Apart from bidirectional prediction, more work is needed
to better resolve the transcriptional dynamics of annota-
tions such as the 5’ and 3’ peaks. The height and spread of
these peaks vary from gene to gene making detection diffi-
cult. However, future work should focus on building models
to better isolate this substructure and define more clearly
segments within an annotated transcript. Alterations in the
size and shape of the GRO-seq signal between experiments
may point to distinct modes of regulation. Indeed leveraging
finer substructure within GRO-seq signal may help to resolve
transcriptional regulation, as genes in close proximity with
relatively similar levels of expression are often grouped. The
ability to isolate distinct but adjacent (or even overlapping)
regions of transcription would be a powerful use of GRO-seq
signal.
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