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a b s t r a c t

We develop a stochastic model to study the specific response of the immune system. The model is

based on the dynamical interaction between Regulatory and Effector CD4þ T cells in the presence of

Antigen Presenting Cells inside a lymphatic node. At a mean field level the model predicts the existence

of different regimes where active, tolerant, or cyclic immune responses are possible. To study the model

beyond mean field and to understand the specific responses of the immune system we use the Linear

Noise Approximation and show that fluctuations due to finite size effects may strongly alter the mean

field scenario. Moreover, it was found that the existence of a certain characteristic frequency for the

fluctuations. All the analytical predictions were compared with simulations using Gillespie’s algorithm.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of the immune system is to detect and neutralize
the molecules, or cells, dangerous for the body without damaging
the healthy cells. A fundamental process of the immune system is
the maintenance of self-tolerance, i.e., the prevention of harmful
immune responses against body components (Langman and Cohn,
1987). The biological significance of this process becomes very
patent upon its failure during pathological conditions known as
autoimmune diseases.

The risk of autoimmunity cannot be dissociated from the
capacity of the immune system to cope with diverse and fast
evolving pathogens. The latter is achieved by setting up a vast and
diverse repertoire of antigen receptors expressed by lymphocytes,
which as a whole is capable of recognizing any possible antigen.
Most lymphocytes have a unique antigen receptor (immunoglo-
bulin in B-cells and TCR in T cells) that is encoded by a gene that
results from somatic mutation and random assortment of gene
segments in lymphocyte precursors. The randomness in the
generation of antigen receptors makes it unavoidable that lym-
phocytes with receptors recognizing body antigens are also made.
These autoreactive lymphocytes can potentially cause autoim-
mune diseases if their activation and clonal expansion are not
ll rights reserved.
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prevented. The question is how is this avoided in healthy
individuals?

Regulatory CD4þ T cells, which express forkhead box protein 3
(FoxP3) are enriched in the CD25 pool of healthy individuals have
been gaining increasing relevance in immunology (Sakaguchi et al.,
2001). Many lines of evidence indicate that these cells play a key
role in the development of natural tolerance and in the prevention
of autoimmune pathologies, by controlling the activation and
proliferation of other autoreactive lymphocytes. The functional
significance of these cells has broadened, as they were shown to
modulate the immune response against pathogens, preventing the
associated immunopathology, and the rejection of transplants.

Some years ago, León and Peréz (2000) proposed a simple
model, consistent with these results able to explain the mechan-
ism of immunological self-tolerance. The main hypothesis behind
this model is that regulatory cells inhibit the proliferation of
effector T cells, but depend on the latter for their own prolifera-
tion. The interaction between these cells is mediated by the
presence of Antigen Presenting Cells (APC).

The model was developed to study the response of macro-
scopic populations of lymphocytes, i.e., the 107 lymphocytes that
may be present in a single lymph node and was technically
approached studying the stability or numerically solving the
corresponding differential equations (León and Peréz, 2000). This
approach, however, might be inappropriate to study the specific
clonal responses in the immune system.

The 107 lymphocytes that exist in a lymph node are really
divided into approximately 105 or 106 different clones (Perelson
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and Weisbuch, 1997). I.e., sets of lymphocytes which recognize
the same antigen and participate in their own specific, rather
independent, immunological response. Therefore, the number of
cells involved in any particular clonal response is far smaller: 102

or 104 T cells, which interact specifically with a small subset of all
the Antigen Presenting Cells available in the lymph node. One
must naturally expect to find clones of different sizes, perhaps
reflecting the ubiquitous nature of the antigen recognized by the
T cells (i.e., the amount of APCs which are recognized). However,
the small size expected for most T cell clones would make
differential equations an inappropriate tool to describe their
dynamics.

In this work, we first reformulated the model of León and
Peréz (2000) within a more general stochastic frameworks of
interactions between regulatory (R) and effector (E) T-cells. From
this formulation we derive, on one hand a mean field description
similar – but not identical – to the ones already known in the
literature for the response of the entire immune system (Carneiro
et al., 2007). On the other hand, an approach to unveil the role of
the fluctuations in the specific response of the system.

Many other models were used previously to study the role of
T cells in the immune response, see for example Bewick et al.
(2009), Kim et al. (2010), Alexander and Wahl (2011), Bergmann
et al. (2000), and Yates et al. (2000). It is not our intention to
review here the differences between these and León’s model.
Instead we just emphasize that our approach can be easily
generalized to these models as well and we hope that this work
may motivate also this line of research.

The rest of the paper is organized as follows. In the next
section, that may be bypassed in a first reading of the manuscript,
we present the main mathematical techniques involved in our
work. Section 3 introduces and motivates the model. In Section 4
we first compare, at the mean-field level, the predictions of our
model with those of similar approaches in the literature. Then, we
discuss how fluctuations may affect these predictions highlight-
ing their relevance for the clonal response of the immune system.
Finally, the conclusions and some remarks suggesting possible
extensions of our work appear in Section 5.
2. Mathematical techniques

When the effects of fluctuations are relevant, as it is often the
case in biological systems, a modeling approach based on ordin-
ary differential equations is not appropriate.

This is well understood when the source of noise are the
thermal fluctuations. But, while less mentioned, it is also impor-
tant when the noise is induced by the finite number of elements
in the populations, i.e., molecules, cells, or individuals (Elf and
Ehrenberg, 2003).

A more convenient framework to describe these problems is a
stochastic approach taking into account the probabilistic nature
of every process. The natural procedure is to write down a
differential-difference equation that keeps track in time of the
probability that the system would have a certain configuration
(~n). Under the Markov assumption it is called the Master
equation (Reichl, 1998)

dPð~n,tÞ

dt
¼
X
~n0 a~n

Pð~n0 ,tÞW ~n0-~n�
X
~n0 a~n

Pð~n,tÞW~n-~n0 , ð1Þ

where ~n is a vector whose components are the numbers of
elements of every different species in the system, Pð~n,tÞ is the
probability of having the state ~n at time t, and W ~n0-~n is the
probability of the transition ~n0-~n per unit time.

Unfortunately, the Master equation can only be solved in
special cases, usually, when the transition probabilities are linear
or constant in the state variables (Gardiner, 1985). In more
general situations we must, instead, resort to approximation
methods. These approximation methods may be divided into
two broad classes: numerical simulation algorithms and pertur-
bative calculations. Under the first class the Gillespie (1977)
algorithm has become the standard tool in the community (see
Appendix A for a short description of the algorithm). It is a Monte
Carlo’s algorithm that simulates a single trajectory ~nðtÞ consistent
with the unknown probability distribution Pð~n,tÞ characterized by
the Master equation. It guarantees to find the correct solution of
the Master equation, but it is often time consuming and it is not
suitable for parameter exploration. On the contrary, perturbative
methods lack the confidence given by a full and formal solution of
the Master equation, but may provide important insight on the
behavior of the system and on the relevance of the parameters.

In this work we present two different perturbative solutions.
The linear noise approximation (LNA) (van Kampen, 1981) which is
an expansion around the large size solution of the corresponding
Master equation. This gives us a tool to understand the relative
size of the fluctuations and their relations with the parameters of
the model. On the other hand, the effective stability approximation

(ESA) (Scott et al., 2007), which is an extension of the LNA, provides
a quantitative characterization of the effect of the fluctuations in
the stability of the phases predicted by the corresponding mean
field model.

2.1. The linear noise approximation

An important difficulty in solving the Master equation arises
from the discreteness of the variables involved (~n). As long as
the number of elements increases, the system evolution turns
more regular and the mean-field equations give a more accurate
description. The linear noise approximation is a systematic
approximation method that rests upon the assumption that the
deterministic evolution of the concentrations in the system can be
meaningfully separated from the fluctuations, and that these
fluctuations scale roughly as the square root of the system size O.

Moreover, in systems where the size of the populations differs
in orders of magnitudes, it is expected that the respective
concentrations fluctuate within different scales. For this reason,
we consider as many parameters Oi as species are involved in the
reactions, and write the numbers of individuals per species
proportional to these values. Each Oi will be a characteristic size
scale for every particular species.

Therefore, under the LNA, the population numbers per species
are written as

ni ¼Oixiþ
ffiffiffiffiffiffi
Oi

p
ai, ð2Þ

where xi is the deterministic prediction for the concentration of
the ith species with respect to the parameter Oi, and ai measures
the fluctuations around xi. Note that formalizing the LNA in this
way, there is not any a priori assumption about the system size
and concentrations higher than one are allowed. If for every
species Oi ¼Oj the standard formulation is recovered.

Now we shall use the continuous variables ai instead of the
integers ni to write the probability distribution Pð~n,tÞ. Let us group
the magnitudes xi into the macroscopic concentrations vector
~x ¼ ðx1,x2, . . . ,xNÞ, and the ai into the fluctuations vector ~a ¼ ða1,
a2, . . . ,aNÞ. The matrix O¼ diagðO1,O2, . . . ,ONÞ is a diagonal
matrix whose principal elements are the extensive parameters
Oi with the units of the volume to which concentrations xi are
referred.

Let us define the following variables:

si ¼
O1

Oi
, o¼ 1ffiffiffiffiffiffiffi

O1

p and bi ¼
ffiffiffiffiffi
si
p

ai, ð3Þ
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thus, we have

ni ¼OixiþOiobi: ð4Þ

Taking (4) into account to expand the Master equation (1) in
powers of Oi, at the leading order the following system of
differential equations appears:

@xi

@t ¼ si

XM
j ¼ 1

Sij
~W jðO �~xÞ: ð5Þ

This corresponds to the deterministic rate equations that are
often used to describe the dynamics of such systems at a mean-
field level.

Here the time scale has been modified following t¼O1t and
Sij is the stoichiometry coefficient, the number in what the ith
species varies when the jth process occurs. These coefficients will
correspond with the element of row i and column j of the
stoichiometry matrix S.

In the next order approximation one finds

@Pð~b,O1tÞ
@t ¼�

XN

i,k ¼ 1

Aik
@½Pð~b,O1tÞbk�

@bi

þ
1

2

XN

i,k ¼ 1

Dik
@2Pð~b,O1tÞ
@bi@bk

,

ð6Þ

where

Aik ¼ si

XM
j ¼ 1

Sij

@ ~W jðO �~xÞ
@xk

ð7Þ

and

Dik ¼ sisk

XM
j ¼ 1

SijSkj
~W jðO �~xÞ: ð8Þ

Aik and Dik are respectively the elements (i,k) of the matrices A
and D, where A can be identified with the Jacobian matrix of the
system of differential equations (5).

Note that Eq. (6) is a Fokker–Plank equation that characterizes
the probability distribution for the fluctuations Pð~b,O1tÞ, cen-
tered on the macroscopic trajectory O �~xðtÞ.

The matrices A and D are independent of ~b, which appears
only linearly in the drift term. As a consequence, the distribution
Pð~b,tÞwill be Gaussian for all time (Risken, 1989). In particular, at
equilibrium (~x ¼~xs) the fluctuations are distributed with density

Psð
~bÞ ¼ ½ð2pÞN det½X���1=2 exp½�1

2
~b

T
X~b�, ð9Þ

and variance X¼/~b � ~b
T
S determined by

A � XþX � AT
þD¼ 0, ð10Þ

where A and D are evaluated on the studied fixed point (Risken,
1989).

The steady-state time correlation function is

/~bðtÞ � ~b
T
ðt�t0ÞS¼ exp½At0� � X: ð11Þ

Moreover, if fluctuations are important it may be useful to
study their properties. With this aim, a very powerful tool is the
Fourier analysis of the equations that govern it. In our case it is
the Fokker–Plank equation (6), who gives us all the information
about the temporal behavior of fluctuations. Given the incon-
venient form of this equation for our purpose, it is more reason-
able to write it in a completely equivalent formulation more
benevolent to investigation using Fourier transforms (McKane
et al., 2007). The problem can then be formulated as the set of
stochastic differential equations of the Langevin type (Risken,
1989):

dbi

dt
¼
XN

k ¼ 1

AikbkþZiðtÞ, ð12Þ
where ZiðtÞ is a Gaussian noise with zero mean and correlation
function given by

/ZiðtÞZkðt
0ÞS¼Dikdðt�t0Þ: ð13Þ

The power spectrum of the fluctuations can be found for every
species of the system by averaging the square modulus of the
Fourier transformation of bi. In this way,

PiðoÞ ¼/9 ~b iðoÞ9
2S¼

XN

j ¼ 1

XN

k ¼ 1

F�1
ij ðoÞDjkðF

y
Þ
�1
ki ðoÞ: ð14Þ

where Fik ¼ iodik�Aik and FykiðoÞ ¼Fikð�oÞ (McKane et al., 2007).
With this expression we have an analytic measure of the con-
tribution of every frequency to the oscillatory behavior of the
concentrations around each fixed point. Through it, the properties
of the fluctuations can be studied.

2.2. Effective stability approximation

It is required just a bit of intuition to realize that the noise can
affect the predictions of the deterministic rate equations models
(Scott et al., 2007). This is particularly clear, once we question
about the stability of the fixed point predicted by a mean-
field model.

In the deterministic analysis, the stability of the model
d~x=dt¼~f ð~xÞ to small perturbations is found by linearizing about
the equilibrium point: ~x ¼~xsþ~xp and the eigenvalues of the
Jacobian Jð0Þ ¼ @~f =@~x9~x ¼ ~xs

provide the decay rate of the exponen-
tial eigenmodes (Strogatz, 1994).

If we now consider the fluctuations around the small pertur-

bation ~xp, the concentrations remain ~x ¼~xsþ~xpþo~bðtÞ. The

Jacobian matrix J¼ @~f =@~x9~x ¼ ~xs þo~bðtÞ
, will be expressed in terms

of the fluctuations o~bðtÞ around the steady-state. In the limit
o�!0, we can linearize J with respect to o and the new Jacobian
becomes

J� J9o-0þo
@J

@o

����
o-0

� Jð0Þ þoJð1ÞðtÞ: ð15Þ

Therefore, new effective eigenvalues l0i, including the influence
of the intrinsic noise, characterize the stability of the phases
(Scott et al., 2007).

l0i ¼ liþlicorr
, ð16Þ

where licorr
is proportional to o, i.e., inversely proportional to the

system size (see Appendix B).
When the system size is small, fluctuations are relevant, and in

many cases the corrections licorr
cannot be ignored. This small

correction may, indeed, change the sign of the eigenvalues (now
l0i) and as a consequence, to change the stability of the phase.
3. The cross-regulatory model

In this section we motivate and present a stochastic model
to describe the dynamics of two (possible small) populations of
T cells: E and R of the immune system.

Some clues on how the regulatory CD4þ T cells suppress the
response of other cells have been derived from well-correlated
in vitro and in vivo experiments. These studies suggest that
T-cell-mediated suppression is not mediated by soluble factors
and require cell-to-cell contact (Takahashi et al., 1998; Thornton
and Shevach, 1998). Moreover, regulatory CD4þ T cells can only
suppress the response of other cells if the ligands of both cells are
expressed by the same Antigen Presenting Cell (APC). It also has
been seen that regulatory T cells do not proliferate in vitro when
cultivated alone in the presence of APCs.
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Despite these strong requirements, it is not yet clear what the
nature of this mechanism is. The model requires a set of
postulates that summarize the life cycle of these cells, and their
interactions. Inspired by the success of León and Peréz (2000) we
are going to assume that the proliferation of T cells occurs via its
conjugation with an APC. An E (effector) cell could duplicate only
if conjugated with an APC which has no R (regulatory) cell. On the
other hand, an R cell can duplicate only if conjugated with an APC
where at least one E cell is also conjugated. In that way,
regulatory T cells exist only in the presence of effector T cells,
but the growth of the E cells is regulated by the presence of the R
cells. A picture illustrative of these postulates is shown in Fig. 1.

In vivo the total number of APCs and their capacities to
stimulate T cells may change, and it is perhaps a function of the
T cells themselves, but we consider them as a constant population
in which every APC has a finite and fixed number of conjugation
sites. Then, each site can be empty or occupied by a regulatory or
effector T cell and all the cells that belong to the same phenotype
(E or R) will have the same probability of being conjugated with
any free site of any APC.

Within these postulates we have to deal with the populations
of free and conjugated cells for each species, and the transition
between the different states. This makes the model very cumber-
some at the stochastic level, and almost intractable. Fortunately
the processes of formation and dissociation of the conjugates are
relatively fast compared to the overall dynamics of the T cell
populations. While a T cell remains conjugated with its APC for a
few hours, the T cell mitotic cycle lasts on average 12 h and the
T cell lifespan is at least several days. Then, it is reasonable to
assume that only free lymphocytes die, and that the numbers of
conjugated T cells of both phenotypes are in quasi-steady state.

Therefore, if a is the total number of APCs, and s the number of
conjugation sites per APC we may define:

konE
Eððas�Eb

�Rb
Þ=asÞ is the probability per unit time of combi-

nation of an E cell and an APC.
koff E

Eb=as is the probability per unit time of dissociation of E to
its conjugate.

Here E and Eb are the numbers of free and conjugated E cells
respectively, and konE

and koff E
are positive parameters that

characterize the processes of occurrence and disappearance of
the conjugates of this cellular species.

In the same way, for R cells these probabilities per unit time
are given by konR

Rððas�Eb
�Rb
Þ=asÞ and koff R

Rb=as respectively.
Fig. 1. Cartoon illustrating the hypothetical mechanism presence-proliferation

during simultaneous conjugation between T lymphocytes and APCs. E cells

promote R cells proliferation, while R cells avoid E proliferation.
If now we set qe ¼ konE
=koff E

and qr ¼ konR
=koff R

, the stationary
state for the formation and dissociation of conjugates for every
species reads

Eb
¼

asqeE

1þqeEþqrR
, Rb

¼
asqrR

1þqeEþqrR
: ð17Þ

After this approximation, our analysis involves only four
significant processes, the birth and death of effector and regula-
tory cells, and is far more tractable. The four processes are
represented in Fig. 2.

Each event is characterized by an occurrence probability per
unit time Wð~n-~mÞ from the state ~n ¼ ðE,RÞ to the posterior one
~m ¼ ðE0,R0Þ. It is

Wð~n-~mÞ ¼

W1 if ~m ¼ ðEþ1,RÞ,

W2 if ~m ¼ ðE,Rþ1Þ,

W3 if ~m ¼ ðE�1,RÞ,

W4 if ~m ¼ ðE,R�1Þ

8>>>><
>>>>:

and the stoichiometry matrix corresponding to this system,
whose element (i,j) contains the changes produced on the species
ith when it occurs the jth process is

S¼
1 0 �1 0

0 1 0 �1

� �
: ð18Þ

Now, following the postulates of our model, a new E cell
appears in the system if there already exists a combined E cell
with an APC that has no R cells simultaneously conjugated. Then,
the probability of the increase of E in 1 is proportional to the
number of APCs (a), times the probability to find in it a conjugated
E cell (Eb=as), times the probability that this APC has no R cells
simultaneously combined. The later has the form of an Hypergeo-
metric distribution (León and Peréz, 2000), but to gain in
simplicity of the expressions we can manage it approximately
as ð1�Rb=asÞs�1, valid when aZ10 (León et al., 2007). This takes
us to the expression

W1 ¼cea
Eb

as
1�

Rb

as

 !s�1

: ð19Þ

The analysis for the growth of the R population in 1 unit is
similar. A new regulatory cell appears in the system with certain
probability if there exists already both R and E cells conjugated in
the same APC during the same interval of time. The probability of
the existence of an E cell conjugated in a given APC where in
Fig. 2. Reaction diagram indicating the events underlying the dynamics of APCs,

E cells and R cells, as assumed in the model.
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addition exists space for an R cell can be written as
½1�ð1�Eb=asÞs�1

�. Multiplying this by the probability that this
APC is combined with an R cell gives the probability for this birth:

W2 ¼cra
Rb

as
1� 1�

Eb

as

 !s�1
2
4

3
5: ð20Þ

In Eqs. (19) and (20), ce and cr are parameters for the effector and
regulatory species that characterize the processes of formation
and dissociation of the different conjugates.

Finally, we assume that the death probabilities for each species
are proportional to the numbers of individuals, with proportion-
ality factors me for effector and mr for regulatory.

Let us set e the concentration of E cells with respect to the
quantity Oe, and r will be the concentration of R cells relative to
Or , where Oe and Or are the characteristic mean values. The
probability vector per unit time ~W that contains the information
of the four processes of birth and death is formed by the
elements:

W1 ¼
ceaqeeOe

1þqeeOe

1þqeeOe

1þqeeOeþqrrOr

� �s

, ð21Þ

W2 ¼
craqrrOr

1þqeeOeþqrrOr
1�

1þqrrOr

1þqeeOeþqrrOr

� �s�1
 !

, ð22Þ

W3 ¼meeOe, ð23Þ

W4 ¼mrrOr , ð24Þ

where the dependencies with Eb and Rb that appear in (19) and
(20) have been substituted by the expressions in (17).
4. Results and discussion

4.1. Mean-field approximation

Once we know all the elements of the transition probabilities
per unit time, and the stoichiometry of the events, we are in
conditions to write the deterministic rate equations that corre-
spond to our model (see Eq. (5)):

de

dt
¼W1�W3, ð25Þ

dr

dt
¼

Oe

Or
W2�

Oe

Or
W4, ð26Þ

where the time has been measured according to t¼Oet.
In the steady-state, de=dt¼ dr=dt¼ 0, the solutions for the

deterministic system are given by a fixed pair (en,rn) of numbers.
Depending on the parameters, the stationary solutions with
biological sense may be of three types: (0,0), (en40;0) and
(en40,rn40).

Attending to the stability of these solutions we define five
phases that are sketched in Fig. 3.

Phase 0: In this phase only the trivial fixed point (0,0) exists.
It is characterized by the relation ceaqeome and within this
phase, this fixed point is always stable.

Phase I: In this phase, only the point (en40;0) is stable.
Phase II: Only the point (en40,rn40) is stable.
Phase III: It is a bistable phase. Both points (en40;0) and

(en40,rn40) are stable.
Phase IV: In this phase, the fixed points presented above are

unstable. A limit cycle develops.
This phase diagram is very similar to the one reported in León

and Peréz (2000). However, for completeness and because the
Phase IV was not predicted before we discuss in detail below the
biological interpretation of the five regions.

Since E cells themselves do not mediate the effective immune
response, but they trigger it, we interpret the state dominated by
regulatory T cells (en,rn) as tolerance or unresponsiveness, and the
state dominated by effector (en40;0) as an effective immune
response or autoimmunity. Such interpretation arises from the fact
that when R cells exist in the system, this population competes with
the effectors for the APCs, limiting the growth of the E population.

Particularly relevant from the immunological point of view is
Phase III. Operating in this region, the model can switch between
the states dominated by regulatory or effector T cells in a
reversible way (León and Peréz, 2000).

For the fixed points of the kind (en40;0), en ¼ ðceaqe�meÞ=

meqeOe, the eigenvalues of the Jacobian matrix are

l1ðen ,0Þ ¼meOe �1þ
me

aqece

� �
ð27Þ

and

l2ðen ,0Þ ¼ �OemrþOeqrcr

me

qece

�a
me

aqece

� �s� �
, ð28Þ

the first one of these eigenvalues is always negative and its
corresponding eigenvector is v1ðen ,0Þ ¼ ð1;0Þ. It guarantees that, if
not perturbed along the r direction, the fixed point is stable. This
means that in those phases where both species can coexist (II, III
and IV), once the R population is extinguished, to take the system
away from the (en,0) state it is necessary that at least one R cell
comes from outside the system. The absence of such a perturba-
tion can be interpreted as the lost of tolerance, and the appear-
ance of an effective immune response. It explains the fact that
thymectomized animals are more susceptible to procedures that
induce autoimmunity that euthymic animals (Shevach, 2000).

It is also well known that if in a tolerant organism the number
of APCs is increased enough, the immune system may turn on an
immunological response. To study under which conditions our
model reproduces this effect it is useful to understand that to
change the parameters space from a state given by (a,cr ,ce)
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to another characterized by (na,cr ,ce) is equivalent, in terms
of the deterministic equations, to change the state (a,cr ,ce) to
(a,ncr ,nce) along the straight line that matches them. So, the
increase in the number of APCs (a) may be interpreted as a motion
along a straight line with slope ce=cr that passes through the
origin in the cr vs ce map.

In our model, a tolerant organism is located in phases II or III. In
the case of a system that starts in region III, raising the number of
APCs makes the system first, to evolve into region I (see the line with
points in Fig. 3). Biologically, it may be interpreted as the entrance
into a region where the tolerance disappears and the animals develop
immunological response. On the other hand, when the organism
starts in the phase II, increasing the number of APCs drifts the system
into a cyclic immune response (see the dashed line in Fig. 3).

It is worth to highlight that our mean-field predictions
compare very well with those obtained by León and Peréz
(2000) for a similar model of R–E interactions regulated by APCs.
We explore a parameter region (that to our knowledge was not
explore before) where qeaqr and find that the bi-stable phase III
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persist. Solid lines represent the deterministic values for fixed points, around which co
may be bounded by a phase IV where the biologically meaningful
fixed points are unstable. Using parameters in this zone we have
numerically solved the system of differential equations (25) and
(26). As Fig. 4 shows, this zone appears very well defined closed
orbits, representative of limit cycles.

The existence of this limit cycle allows the model to reproduce
the emergence of a cyclic immune response in pathologies such as
Multiple Sclerosis (Compston and Coles, 2002; Vollmer, 2007). In this
way, changing the parameters one can observe two different kinds of
immune response, one stationary and another cyclic. Both patholo-
gies are observed in the Multiple Sclerosis, perhaps because genetic
variations between individuals turn on the immune response within
a different set of parameters. To our knowledge, no other mathema-
tical model based on the dynamics of T cells regulated by R cells had
predicted it together with effective response and tolerance.

Moreover, it is useful to compare the previous mean-field
results with our original stochastic model. The reasons are two-
fold, first it should confirm that the mean-field approach is correct
when studying large systems and second, it should shed some light
on the behavior of smaller systems, like those characteristics of
specific responses. To do this, we run Gillespie’s algorithm. In Fig. 5
we show the results of typical runs for parameter values near the
different fixed points, while in Fig. 6 the numerical solutions of the
deterministic equations for eðtÞ and rðtÞ are compared with
Gillespie’s simulations for the cyclic regime. These graphs demon-
strate that, within a stochastic approach, strong fluctuations appear
around the values predicted by the mean-field equations. Below,
we show that if the size of the population is small enough these
fluctuations become relevant and may qualitatively change the
results of the mean field approximation.
4.2. The role of the fluctuations

In smaller systems the noise may induce qualitative changes in
the mean field dynamics discussed above. This fact might be
particularly relevant, since it could imply that the dynamics of
small T cell clones would be significantly different from the one
described here and in previous works (León and Peréz, 2000). We
have carried out a series of Gillespie’s simulations with our
stochastic model using parameter sets that belong to region III
when classified according to the mean-field equations. Our results
illustrated that steady state stabilities, specially for the steady
state dominated by regulatory T cells (tolerant steady-state),
could be significantly affected by stochastic fluctuations. Fig. 7
shows how in simulations the T cell concentrations remain
oscillating around the mean-field value of the tolerant steady-
state where the simulations began. However after a while
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fluctuations drive the system away into a state dominated by
effector T cells (immune steady state). In other cases simulations
show that the tolerant steady state became unstable under
stochastic fluctuations but it dynamically evolves into a trivial
steady state with zero effector and regulatory T cells.

A new phase diagram (predicted with the help of Eq. (39)) is
represented in Fig. 8, and has some differences when compared
with Fig. 3. The more striking feature of this map is the appearance
of a new zone embedded in region IV with the characteristics of
phase II. In this region of the parameters, instead of having a cyclic
behavior, the system evolves into a tolerant state (region II). This
conclusion can be corroborated by simulations, and is in contra-
diction with what the normal analysis of eigenvalues predicts.

This result sustains the idea that, increasing the number of APCs, a
cyclic immune response may be turned into a tolerant response (see
the dashed line joining regions IV and II in Fig. 8). Along this line,
when the number of APCs is increased, simulations show a stretching
of the amplitude of the cycles until they reduce to a mere fluctuating
behavior around the deterministic fixed point as in Fig. 5c.
On the other hand, fluctuations, also reduced the bistable
region III favoring the immune response of the system. Note
however, how small spots of bistability persist within region I.

Moreover, we study the effect of these fluctuations when the
system is subject to external perturbations. For example, in the
phase III, the system, depending on the initial conditions may stay
in the tolerant state ðe40,r40Þ or in the state ðe40,r¼ 0Þ. In the
mean field model, to switch the system from one state to the
other, it must be strongly perturbed and moved away from
the respective basin of attraction of the fixed point. In the case
of small systems, small perturbations may switch the state of the
system, provided they are frequent enough.

In Fig. 9 we show the probability (Pc) of switching from the
tolerant state to the state ðe40,r¼ 0Þ as a function of the number
of perturbations. In this case, with a period T the number of cells at
a given time was reduced an 80%. Ts is the size of the simulations
(number of Gillespie’s steps, in the figure Ts¼105, 2�105 and
4�105). As can be easily see if the number of perturbations is
small enough Ts=T-0, the system do not switch from one state to
the other. It is always tolerant. On the other hand, when Ts=T-1,
i.e., when the period of the perturbations is small enough, the
system goes to the responsive state with probability 1.
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The existence of a clear threshold for the minimum number of
perturbations needed to change the state also signifies the impor-
tance of the fluctuations for the occurrence of this transition.

All these results confirm our previous intuition. The role of the
fluctuations may be relevant and may alter significantly the
predictions of the mean-field models. In particular, regions that
were considered bi-stable may now develop immune response,
and regions in which a cyclic pattern was predicted may become
fully tolerant. Moreover, also the response of the system to
external perturbations change. Perturbations, that may produce
only transient behaviors in the deterministic model, may become
relevant when fluctuations are taken into account. Of course, the
magnitude of these results are parameter dependent and probably
richer diagrams may be found exploring further the model. But our
results already prove that the interpretation of the specific immune
response in base of mean field models should be done with care.
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4.3. Power spectrum

Any single run of the stochastic system (as panels b and c in
Fig. 5) shows that coherent oscillations are sustained in para-
meter regimes in which the deterministic equations approach a
fixed point. It evidences the fact that fluctuations cannot be safely
ignored in systems composed of a few thousands of elements.

Therefore, it is important to understand, not only the con-
sequences of these fluctuations as done above, but also their
properties. To do this, we analyze the characteristics of these
fluctuations around the steady state, using Eq. (14):

PiðoÞ ¼
XN

j ¼ 1

XN

k ¼ 1

F�1
ij ðoÞDjkðF

y
Þ
�1
ki ðoÞ, ð29Þ

keeping in mind that for our model
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Then, evaluating A and D in the corresponding fixed point, and
using them to calculate Eq. (29) we can determine the contribu-
tion of every frequency to the composition of the oscillations.
Then, the discrete Fourier transform of a data of concentration
and time that comes from the simulations can be compared with
the power spectra curve calculated with (29). It would give us a
way to know how good were the approximations made.

In Fig. 10 we show the power spectra calculated by (29) and
the one obtained by averaging the Fourier transforms of 6000
different Gillespie’s simulations. Both have been normalized in a
way that Pðo¼ 0Þ ¼ 1 and it is evident that the coincidence is
remarkably good.

The peak in the power spectrum indicates the existence of a
resonance frequency. In it, the fluctuations of the concentrations
that define the state of the system amplify their values as a function
of the parameters of the model. This effect may be interpreted as the
induction by the internal noise of amplified oscillations in systems
which, when described through the deterministic rate equations for
a given set of parameters lack a cyclic behavior.

From the technical point of view, this characteristic frequency
arises because of the existence of complex eigenvalues with non-
zero imaginary parts for the Jacobian at the fixed point. In the
standard stability analysis, the imaginary part of the eigenvalues are
responsible for oscillatory transient behaviors near the fixed points.
However, here the stochasticity due to the smallness of the system
results in persistent perturbations away from this fixed point, so
that both features together result in an overall oscillatory effect.

The existence of this characteristic frequency could be useful
to induce transitions between two states of the system just by
making a parameter (such like the number of APCs) to fluctuate
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with a small amplitude but with the appropriate frequency.
Simulations corroborate this when it is induced a change from a
tolerant phase to an immune one by making a to fluctuate near a
III–I region border. Work is in progress to check the reliability of
this approach to develop new therapeutic techniques.
5. Conclusions

We present a stochastic model of interactions between Effec-
tor and Regulatory CD4þ T cells in the presence of Antigen
Presenting Cells that is able to show active, tolerance, or cyclic
immune responses. We characterize the phase diagram in the
mean field approximation, and then analyze the corrections, due
to finite size effects, to this phase diagram in the presence of
fluctuations. This corrected phase diagram may be understood as
a first attempt to characterize a stochastic model for the specific
response of the immune system. In fact, we prove that the
fluctuations may strongly alter the mean field predictions turning
for example tolerant zones in responsive or cyclic responses into
tolerant, and therefore that any analysis of the clonal response of
the immune system based on mean field predictions must be
taken with caution. Moreover, we show that our model present
sustained oscillations at a characteristic frequency that may be
relevant to understand, or treat these clonal responses.
Appendix A. Gillespie’s algorithm

The occurrence of every process that can take place into our
system has a very strong stochastic component. Every reaction
depends on a lot of variables that can only be described in a
probabilistic way, so in a given state, both the next process that
would take place, and the moment in which it will occur are
random variables. Even when it is not possible to find an analytic
solution for the Master equation that governs the system, micro-
scopic simulations of the processes defined by the relations
(21)–(24) can be carried out using the algorithm originally
proposed by Gillespie (1977).

The algorithm keeps the random fashion in which processes occur.
The backbone of such a simulation consists in determining which one
will be the next process, and when will it occur. Every run of the
simulation will give a different temporal sequence of concentration
that is, according to the Master equation of the system.

The procedure can be synthesized in three main steps:
1.
 Calculate the occurrence probabilities (Wj) per unit time for
every process that can take place in the system.
2.
 Generate two random numbers r1 and r2 using a unit-interval
uniform random number generator, and calculate Dt and m
according to (30) and (31):

Dt¼
1

W
ln

1

r1

� �
ð30Þ

and

Xm�1

j ¼ 1

Wjor2Wr
Xm
j ¼ 1

Wj, ð31Þ

where

W ¼
XM
j ¼ 1

Wj: ð32Þ
3.
 Using the Dt and m values obtained, increase the time t by Dt,
and adjust the cellular population levels to reflect the occur-
rence of the m th process.
Appendix B. Effective stability approximation

To study the stability of a non-linear model d~x=dt¼ ~f ð~xÞ the
system is usually linearized around a fixed point ~x ¼ ~xsþ : ~xp :

d~xp

dt
¼ Jð0Þ ~xp , ð33Þ

where the eigenvalues of Jð0Þ ¼ @~f =@~x9~x ¼ ~xs
define the decay rate of

the exponential eigenmodes.

Considering the fluctuations around the small perturbation ~xp,

one may assume that the concentrations remain ~x ¼~xsþ~xpþ

o~bðtÞ. The Jacobian matrix J¼ @~f =@~x9~x ¼ ~xsþo~bðtÞ
, will be expressed

in terms of the fluctuations o~bðtÞ around the steady-state. In the
limit o�!0, we can linearize J with respect to o and the stability
equation becomes

d~xp

dt
¼ ðJð0Þ þoJð1ÞÞ~xp , ð34Þ

where the elements of J(1) are random coefficients connected to b.
This is a linear stochastic differential equations and one is further
interested in its mean stability. Taking the ensemble average in
the expression above

d/~xpS
dt

¼ Jð0Þ/~xpSþo/Jð1Þ ~xpS ð35Þ

and now the hard point is to evaluate the last term in the right
hand side above. One standard approach is to use Bourret’s (1965)

closure scheme. Under this scheme, provided that Jð0ÞboJð1Þ the

dynamics of /~xpS is governed by the following equation:

d/~xpS
dt

¼ Jð0Þ/~xpSþo2

Z t

0
Jcðt�tÞ/~xp ðtÞ dtS, ð36Þ

where Jcðt�tÞ ¼/Jð1ÞðtÞeJð0Þðt�tÞJð1ÞðtÞS, and the equation can be
formally solved using Laplace’s method:

/x̂pSðsÞ ¼ ðsI�Jð0Þ�o2JcðsÞÞ
�1/x̂p ð0ÞS: ð37Þ

But a necessary and sufficient condition for stability is that the
roots of

detðl0I�Jð0Þ�o2Jcðl
0
ÞÞ ¼ 0 ð38Þ

all have negative real parts. Then, diagonalizing Jð0Þ, diag½li� ¼

½P�1Jð0ÞðsÞP�ii and to second order in o2 one obtains

l0i ¼ liþlicorr
, ð39Þ

where licorr
¼o2½P�1JcðsÞP�ii (see also Scott, 2011; Scott et al.,

2007 for a more detail account of the Effective Stability
Approximation).

References

Alexander, H.K., Wahl, L.M., 2011. Self-tolerance and autoimmunity in a regulatory
T cell model. Bull. Math. Biol. 73, 33–71.

Bergmann, C., van Hemmen, J.L., Segel, L.A., 2000. Th1 or Th2: how an appropriate t
helper response can be made. Bull. Math. Biol. 63, 405–420.

Bewick, S., Yang, R., Zhang, M., 2009. The danger is growing! a new paradigm for
immune system activation and peripheral tolerance. PLoS ONE 4, e8112.

Bourret, R.C., 1965. Ficton theory of dynamical systems with noisy parameters.
Canadian Journal of Physics 43, 619–639.
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