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Abstract.  The protein p53 has a well established role in protecting genomic 
integrity in human cells. When DNA is damaged p53 induces the cell cycle 
arrest to prevent the transmission of the damage to cell progeny, triggers the 
production of proteins for DNA repair and if the damage can not be repaired 
the p53-mediated apoptotic pathway is ultimately activated. The p53-Mdm2 
feedback loop seems to be the key circuit in this response of cells to damage. 
Measurements in individual human cells have shown that p53 and its regulator 
Mdm2 develop sustained oscillations over long periods of time, even in the 
absence of stress. Here we study three stochastic models of the p53-Mdm2 
circuit. The models capture the response of the p53-Mdm2 circuit in its basal 
state, in the presence of DNA damage, and under oncogenic signals. They 
are studied through Gillespie’s simulations, mean field methods and analytical 
approaches within the context of the linear noise approximation. While we 
can not discard that other sources of noise may also be important, our results 
compare quantitatively well with existing experimental data in single cells, 
supporting the relevance of the intrinsic noise in tuning cellular functions.

Keywords: dynamics (theory), molecular networks (theory), systems biology

L Cruz-Rodríguez et al

On the role of intrinsic noise on the response of the p53-Mdm2 module

Printed in the UK

P09015

JSMTC6

© 2015 IOP Publishing Ltd and SISSA Medialab srl

2015

15

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/2015/09/P09015

Papers

9

Journal of Statistical Mechanics: Theory and Experiment

© 2015 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/15/P09015+25$33.00

mailto:lcruz@fisica.uh.cu
mailto:mulet@fisica.uh.cu
http://stacks.iop.org/JSTAT/2015/P09015
http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/2015/09/P09015&domain=pdf&date_stamp=2015-09-16


On the role of intrinsic noise on the response of the p53-Mdm2 module

2doi:10.1088/1742-5468/2015/09/P09015

J. S
tat. M

ech. (2015) P
09015

Introduction

The p53 protein has attracted special attention during the last twenty years due to 
strong existing evidence of its malfunction in most human cancers [1]. Like most pro-
teins, p53 may be inactivated directly by mutations in its own gene or as a result of the 
interactions with other genes that transmit information to or from p53. Unfortunately, 
the many pathways that control its activation and the comparable large number of 
functions, some apparently contradictory, still make the complete understanding of the 
role played by this protein an unsolved problem [1, 2].

In general, p53 works as a transcription factor that positively or negatively regulates 
the expression of several, and very different genes. The p53 gene was first identified as 
a tumor suppressor gene, but we have now evidence that it has a role in the regulation 
of glycolysis [3], the repair of oncogenic response [4], the regulation of metabolism [5] 
and many others [2].

One of the main mechanisms regulating the expression of p53 is its interaction with 
the protein Mdm2. They form together a feedback loop very common in many biologi-
cal systems. In normal conditions the activation of p53 activates Mdm2 that in turn 
suppresses p53 [6]. Then, if the cell is in the presence of stress, like DNA damage, p53 
and/or Mdm2 are phosphorylated and their interaction is reduced, increasing the level 
of p53 in the cell [6].
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The first experimental studies of the dynamics of p53 and Mdm2 after gamma irra-
diation were done studying the average concentration of both proteins in a population of 
cells. These studies revealed that both proteins undergo oscillatory behavior after DNA 
damage, but these oscillations appeared to be damped. An important breakthrough in 
the comprehension of this system was achieved a few years ago when researchers tracked, 
cell by cell the concentration of p53 and Mdm2 after irradiation with gamma rays [7, 8]. 
They found that, when looking into single cells, the oscillations are undamped, with a 
fixed frequency and a highly variable amplitude, suggesting that the previous reports of 
damped oscillations resulted from the average over the population of cells. More recent 
experiments of the same groups were fundamental to clarify the following issues [9–11]:

	•	 The dynamics of p53 is dephased from the dynamics of Mdm2 and both are 

characterized by a fixed frequency and variable amplitudes of oscillations within 

a single cell.

	•	 p53 is activated by a mechanism that leads to similar pulses in unstressed condi-
tions as in response to DNA damage, but the pulses in unstressed conditions do 
not lead to cell cycle arrest or apoptosis.

	•	 The study of the Fourier spectra of the oscillations has shown that the character-

istic frequency of oscillation changes from ≈ −f h0.14 1 when the system is under 
DNA damage to ≈ −f h0.08 1 in basal conditions.

From the mathematical point of view these results inspired the development of new 
models. Most of them based on mean field equations with some biological motivated 
noise, added ad hoc, to stabilize the oscillations [9, 12, 13]. Alternatively, the oscilla-
tions may be stabilized introducing additional feedback-loops to the usual p53-Mdm2 
model [14] or temporal delays [15].

Surprisingly, while it is well known that the number of p53 molecules in a single 
cell is small (around 103–104[16]), indicating that mean field approaches may not be 
appropriate approximations, only few previous studies [17–19] suggested that the 
finite size of the populations could be the source of the stability in the oscillations. 
However, most of these works considered only simulations and none of them com-
pared in a quantitative manner the results of these simulations with experimental 
data. Here, we push this idea further, studying the isolated p53-Mdm2 module, but 
also the module in the presence of different external stresses: DNA damage and onco-
genic response. In these two cases the role of the finite size fluctuations is studied 
for the first time. Moreover, we clarify, through analytic arguments, the role of the 
parameters of the models in the stability of the oscillations. With these predictions 
we went for the main goal of our work, to show that this mechanism may quantita-
tively explain, in different conditions, the experimental data of the p53-Mdm2 module 
dynamics in single cells.

The p53-Mdm2 model and Mathematical Background

Probably the simplest version, and the starting point of any development of the p53-
Mdm2 module is the loop presented in figure 1. This is a feedback loop in which p53 

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
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acts as a transcription factor that regulates the expression of Mdm2 which, in turn, 
regulates the activity of p53. This is a well studied model [8, 9], whose mean field solu-
tion is characterized by damped oscillations. Sometimes, it is convenient to introduce 
in the model an intermediary species for the interaction between p53 and the Mdm2, 
usually a messenger mRNA that acts as the transcription factor of the Mdm2. We have 
shown before [19] that this intermediary is the responsible for the above mentioned 
dephasing between the oscillations of p53 and Mdm2 proteins. However, for simplicity 
we will assume here that it is in equilibrium, keeping the scheme of figure 1, as our 
basic block for the p53-Mdm2 module.

We formalize the model starting from a stochastic approach considering the number 
of components of each species, p53 (np53) and Mdm2 (nMdm2) as the relevant variables 
of the problem.

From this point of view one faces the problem of solving the following Master 
equation:

��
�� ���� ��

���
� ��� ���∑

∂
∂

= → − →′
≠ ′

′ ′
→

P n t

t
P n t W P n t W

( , )
( ( , ) ( , ) )

n n
n n n n� (1)

where →P n t( , ) is the probability that the system is in state =→n n n( , )p53 Mdm2  at time t 

and →→
′→W

n n
 are transition rates from one state to another. The solution of equation (1) 

is an easy task only for very simple transition rates and one must usually use numeri-
cal methods, or resort to approximations. In this work we try both approaches and 
compare the results.

The simulations of the temporal evolution of the system can be obtained using the 
Gillespie algorithm [20]. As other Monte Carlo techniques this algorithm guarantees an 
exact solution, but it is time consuming and is not a good tool to explore the parameter 
space. Moreover, to understand the role of the parameters of the model it is important 
to have at least approximate solutions to the problem. Here, we use the Linear Noise 
Approximation (LNA) [21], that was first proposed in the context of chemical kinetics 
and have gain considerable attention in the last few years for modeling intracellular 
processes, [22–24], but also in more general contexts [25, 26]. In addition we compare 
the results of this approximation with experimental data from the literature. The 

Figure 1.  Sketch of the p53-Mdm2 feedback loop in its basal state. The protein 
p53 activates Mdm2 and Mdm2 suppresses p53.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
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mathematical details can be found in [21], and we summarize them in the appendix A 
for completeness. However, to simplify the reading, and to keep the consistency of the 
manuscript we present here its main results.

One of the difficulties to solve equation (1) is the discrete character of ni. To deal 
with this, van Kampen [21] proposed the following approximation:

α= Ω + Ωn xi i i� (2)

i.e. one approximates the number of molecules of species i by some concentration, plus 
some fluctuations proportional to the square root of the system size Ω. Substituting (2) 

into (1) and developing the equation in order of 
Ω
1
 one obtains, at first order a set of dif-

ferential equations for xi, usually called the mean field or deterministic approximation:

�∑τ
∂
∂

= Ω→x
S W x( )i

j

ij j� (3)

where Sij is the stoichiometric matrix of the interactions (see the appendix A) for a 
detail derivation). At second order one can prove that the fluctuations αi are Gaussian 
variables. However, to compare them with the experiments it is more useful to describe 
the evolution of these variables in terms of Langevin equations.

∑
α
τ

α η τ
∂
∂

= +
=

A ( )i

k

N

ik k i
1

� (4)

where = ∑ =
∂
∂

A Sik j
M

ik
W

x1
ij

k
 and the ηi has zero variance and correlation function 

⟨ ⟩η τ η τ δ τ τ= −′ ′D( ) ( ) ( )i j ik  with = ∑ =
→D S S W x( )ik j

M
ij kj j1  (see the appendix A).

Equation (4) is a linear Langevin equation that can be easily solved in the Fourier 
representation

∑α η= Φ−w wˆ ( ) ˆ ( )i

k
ik k

1

� (5)

where δΦ = −w Aiik ik ik. From α wˆ ( )i  one can get the power spectrum of the fluctuations 
as:

∑ ∑α ω ω= 〈 〉 = Φ Φ− −P w w D( ) ( ) ( ) ( ) ( )i i

j k
ij jk ki

2 1 1∣ ∣ *
� (6)

which, when studying fluctuations in single cells, is the quantity usually reported 
experimentally [9].

Results

In this section we present the main results of our work. It is divided in three parts, in 
each one of them the p53-Mdm2 module is studied either as an isolated structure or 
considering its interactions with different external elements. The organization of each 

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
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subsection is the same, we first motivate the model from the biological point of view 
and then present its stochastic formulation. We will show the results of simulations 
using Gillespie’s algorithm and compare them with the prediction of the correspond-
ing mean field solution (3). Then, we study the fluctuation spectra obtained from the 
simulations and compare them with the predictions of the Linear Noise Approximation 
(LNA). Finally we discuss the connection with experimental results in similar model 
systems.

Basal response

In the absence of any external signals p53, is activated only by random DNA damage. 
This is a common event during the cell life cycle. Spontaneous hydrolysis, collapsing 
replication forks and oxidative stress [27, 28], but also metabolic stress may produce 
p53 activation [5]. Within this context we study the basal response using the model in 
figure 1.

In stochastic terms the model is well described by the following set of expressions:

⟶ +
W

p53 p53 Mdm2
1� (7)

⟶
W

p53 2p53
2� (8)

⟶ Φ
W

p53
3� (9)

⟶ Φ
W

Mdm2
4� (10)

⟶+
W

p53 Mdm2 Mdm2
5� (11)

where equations (7) and (8) reflect the activation of Mdm2 and the self-activation of 
p53. Equations (9) and (10) the decay of both species and equation (11) reflects the 
regulation of p53 by Mdm2. The species Φ reflects a vacuum state that is irrelevant in 
the analytical description of the problem, but is conveniently introduced to allow the 
free variation of the quantities of p53 and Mdm2 during the simulation keeping the 
system’s size controlled [24]. The intuition is that if N is the total number of particles 
in the system, these are p53, Mdm2, and the number of molecules of the Φ species. In 
this sense, the dummy variable can be interpreted as the set of species in the cell that 
are connected with the process of interest, but not taken explicitly into account within 
the model.

The different Wi are transition probabilities proportional to the size of the system 
[21]. To fix concepts we work with the simplest possible transition probabilities, in  
this case:

= ΩW k x1 1 p53� (12)

= ΩW k x2 2 p53� (13)

= ΩW k x3 3 p53� (14)

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
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= ΩW k x4 4 Mdm2� (15)

= ΩW k x x5 5 p53 Mdm2� (16)

The transitions (W1, 2), i.e. activation of Mdm2, and self-activation of p53 are pro-
portional to the amount of p53 in the system. The degradation of Mdm2, (W4) is pro-
portional to the amount of Mdm2. The p53 is degraded following two mechanisms, a 
normal degradation (W3) proportional to the quantity of p53 in the cell, and a Mdm2-
mediated degradation (W5), that is proportional to the quantities of p53 and of Mdm2. 
This is a clear simplification of the problem. However, one must first notice that 
non-linear approaches, although used with success in the modelling of gene regulatory 
networks are approximate expressions designed to describe a known biological phenom-
enology in systems governed by large populations, where the concept of ‘concentration’ 
is well defined [29, 30]. On the contrary we are dealing with problems where the num-
ber of molecules of the species involved is rather small, and therefore the concept itself 
of concentration is ill-defined. Of course, one could also write down transition rates 
that may reproduce in the proper limit of large number of molecules Hill-type func-
tions, but it is not necessary true that this is a better assumption for small systems. 
Our linear hypothesis is nevertheless valid far from the saturation regime of the Hill 
function- that indeed is usually defined for very large concentrations. Therefore, follow-
ing (3) the mean-field equations of this model read:

= − −
x

t
k x k x k x x

d

d

p53
2 p53 3 p53 5 p53 Mdm2� (17)

= −
x

t
k x k x

d

d
Mdm2

1 p53 4 Mdm2� (18)

The fixed points of these equations are: (0, 0) and ( ),
k k

k k

k

k
4 2

1 5

2

5
 where to simplify nota-

tion we considered = −′k k k2 2 3 and relabeled it as k2. Then, the non trivial solution 
has biological sense only if the rate of activation of p53 is larger than its degradation  
rate (k2  >  0).

The stability of these fixed points is defined by the following Lyapunov exponents:

λ→ =



−






→ k

k
(0, 0) 2

4
� (19)

and:

* * λ→ =













− + −







− − −















→
x x

k k k k

k k k k

( , )

1

2
4

1

2
4

p53 Mdm2

4 4
2

2 4

4 4
2

2 4

� (20)

These results guarantee that if the non-trivial solution exists (k4  > 0 and k2  >  0), 
then it is stable. Moreover, if <k k44 2, i.e. if the activation of p53 is large enough, it 
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displays damped oscillations. This is the region of parameters relevant from the biologi-
cal point of view.

In figure 2 we show the comparison between the numerical solution of these equa-
tions with the results of the Gillespie algorithm for the same values of the parameters. 
Note that, while the deterministic solution is over-damped, the stochastic solution dis-
plays persistent oscillations around the fixed point.

To characterize these oscillations and in order to compare our model with the 
experimental results reported in [9], we computed the power spectrum of the results 
of the Gillespie simulations over 200 realizations and made their geometrical average. 
The resulting power spectrum of the oscillations of p53 extracted from the simulations 
is presented (symbols) in figure 3. In the same figure we also show (line) the analytical 
results predicted by the LNA (see equation (6) and the appendix A). The inset presents 
the tail of the power spectrum in a logarithmic scale. The linear dependency of this tail 
with the inverse of the frequency is also a prediction of the LNA.

The existence of a maximum in the power spectrum of the fluctuations in figure 3 
is associated to the presence of a characteristic frequency for these fluctuations. In an 
infinite system, these oscillations die out, but the stochasticity due to the finite size 
of the system acts as a white noise, see equation (4), that interacts with the proper 
frequency of the system producing a resonance-like effect. This characteristic frequency 
is connected with the presence of an imaginary part in the eigenvalues of the system 
of differential equations  and is a phenomena that has been very well characterized 
before in other models, see for example, [22–26]. In our specific case it is easy to show 
(see the appendix A), that the frequency of the oscillations only depends on the effec-
tive activation rate of p53 ( −k k2 3) and the decay rate of Mdm2(k4). On the contrary, 
the activation rate of Mdm2 by p53 (k1) and the regulation of the p53 by Mdm2(k5) 
although unavoidable to build the feed-back loop in the model are not connected with 
the characteristic frequency of the oscillations, suggesting a possible robust mechanism 
of interaction with other species.

Figure 2.  Typical run showing the oscillations of p53 in the basal state. The 
bold curve indicates the mean field solution and the thin one are results from the 

Gillespie simulation. Parameters: = −→
k h(0.99, 1, 0.44, 0.49, 1.05) 1.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
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The comparison with the experimental data is simplified with the help of the previ-
ous theoretical predictions that set a relation between some parameters of the model 
and the frequency of oscillations. This in turn can be extracted from the experimental 
data [9]. In this case for example we know (see the appendix A) that the frequency of 
oscillations is defined through the expression:

ω π= ≈ −f k k k2 ( )2 3 4� (21)

and from the experimental data [9] that f    =   0.08 h−1, it is simply then to choose values 
of k k,2 3 and k4 that satisfy this condition and are consistent with previous predictions 
in the literature.

In fact, figure 3 compares also very well with figure 6 in [9] where the authors stud-
ied the basal response of the system and presented experimental results for the Fourier 
transform of the fluctuations. In that work the authors model their results adding some 
noise ad-hoc to mean field equations that are similar to ours. On the contrary, in our 
approach, the oscillations arise naturally from the finite size of the populations involved 
and reproduce very well the value reported in the experiments f    =   0.08 h−1.

The rest of the parameters chosen have little influence in the main characteristic of 
the curve and as can be seen in the table 1 they compare very well with previous reports 
in the literature. Only k5, the parameter reflecting the Mdm2-depending degradation 
rate of p53 is clearly underestimated in comparison with the value reported in [8]. But 
one must notice that, on one hand, their activation rate of p53 (k2) is larger than ours, 
and on the other, that our model includes and Mdm2-independent degradation rate of 
p53 (k3) that is absent in the model V of reference [8]. Therefore this underestimation 
of k5 is not surprising at all.

Response in the presence of stress

We already mentioned that p53 is one of the central proteins in the cellular response to 
stress. One of the most typical stresses is DNA double strand break (DSB), which could 

Figure 3.  Average power spectrum of the fluctuations of p53 in its basal state. 
The points represent the power spectrum obtained after averaging over 1000 
realizations of the Gillespie algorithm. The continue line is the prediction from the 
LNA. Note the existence of a characteristic frequency of oscillations. Parameters: 

= −→
k h(0.99, 1, 0.44, 0.49, 1.05) 1.

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015
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be generated, for example, by gamma irradiation. The DSBs produces the activation 
of the upstream kinase ATM, that in turn induces the phosphorylation (activation) 
of p53. The p53, as already mentioned, then works as a transcription factor of several 
target genes. These genes activate different responses, ranging from DNA repair to 
apoptosis [10].

It is then natural, when modelling this kind of stress, to incorporate ATM as a new 
dynamical species. In figure 4 we present a sketch of this model. From the technical 
point of view, we must add to the dynamics governing the basal state the following 
new transitions:

⟶ +
W

pATM ATM 53
6� (22)

⟶+ p
W

pATM 53 53
7� (23)

⟶ Φ
W

ATM
8� (24)

⟶
W

ATM 2ATM
9� (25)

These transitions reflect the activation of p53 by the ATM, (W6), the regulation of 
the ATM by p53, (W7), the natural degradation of the ATM, (W8), and a self-reinforce-
ment field for the ATM, (W9) that mimics the persistence of the damage. It is impor-
tant however to take in mind that W7 summarized a complex set of processes that after 
activation by p53 let to the DNA repair. As in the previous section we assumed that 
they take the following simple form:

= ΩW k x6 6 ATM� (26)

= ΩW k x x7 7 p53 ATM� (27)

= ΩW k x8 8 ATM� (28)

= ΩW k x9 9 ATM� (29)

Table 1.  Comparison between our predictions for the values of the parameters of 
the model and similar estimates in the literature (Model V in [8]).

Parameter h−1 This work Literature

k1 .99 1.5 ±60% [8]
k2 1.0 2.0 ±25% [8]
k3 0.44 —,— [8]
k4 .49 0.9 ±30% [8]
k5 1.05 3.7 ±50% [8]

http://dx.doi.org/10.1088/1742-5468/2015/09/P09015


On the role of intrinsic noise on the response of the p53-Mdm2 module

11doi:10.1088/1742-5468/2015/09/P09015

J. S
tat. M

ech. (2015) P
09015

With these definitions of the transition rules, we may write the mean field equa-
tions of the model:

= −

− +

= −

= − −

x

t
k x k x

k x x k x

x

t
k x k x

x

t
k x k x k x x

d

d

d

d
d

d

p53
2 p53 3 p53

5 p53 Mdm2 6 ATM

Mdm2
1 p53 4 Mdm2

ATM
9 ATM 8 ATM 7 ATM p53

�

(30)

These equations  are similar to the ones in (18), but now the role of ATM on 
the activation of p53 results in the addition of a new term to the first equation. 
Moreover, ATM is also a new dynamical variable whose evolution must be taken into  
account.

This system of equations has three different fixed points. They are, (0, 0, 0), ( ), , 0
k k

k k

k

k
2 4

1 5

2

4
 

and −( ( ))k, ,
k

k

k k

k k

k

k k

k k k

k k 2
9

7

9 1

7 4

9

7 6

9 1 5

7 4
 where for simplicity we re-labelled again = −′k k k2 2 3, and 

= −′k k k9 9 8, as k2 and k9 respectively.

The Jacobian matrix necessary to study their stability takes the general form:

Figure 4.  Sketch of the p53-Mdm2 feedback loop in the presence of DNA damage. 
The protein p53 activates Mdm2 and Mdm2 suppresses p53. Moreover. the ATM 
activates the p53 that in turn regulates ATM.
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=










− −
−

−










J

k k x k x k

k k

k x

0

0 0

2 5 Mdm2 5 p53 7

1 4

7 ATM

* *

*

that evaluated in the fixed point of interest −( ( ))k, ,
k

k

k k

k k

k

k k

k k k

k k 2
9

7

9 1

7 4

9

7 6

9 1 5

7 4
 transforms into the 

following secular equation:

λ λ λ+ − +





− −





− =c k
k k k

k
k c k c k k c( ) 03 2

4
9 1 5

7
4 9 9 4� (31)

where = −c k
k k k

k k2
9 1 5

7 4
.

This secular equation  must be studied numerically and its solution defines the 
stability of the fixed points. We have found that depending on the parameters, three 

different regions are well defined. In Region I the solution { }x x x* , * , *
p53 Mdm2 ATM  may 

exist, is stable and the system reaches the fixed point with damped oscillations. In 

this region also the solution { }x x* , * , 0p53 Mdm2  is stable if k2  >  0. Depending on the initial 

condition, the system is attracted to one or another fixed point. In Region II the solu-

tion { }x x x* , * , *
p53 Mdm2 ATM  has biological sense and is stable, but the fixed point is reached 

without damped oscillations. In this region the solution { }x x* , * , 0p53 Mdm2  does not exist. 

Finally, in Region III only the solution { }x x* , * , 0p53 Mdm2  is stable.
Based on the results of the previous section  we concentrate our attention in 

Region I, where the mean field fixed point { }x x x* , * , *
p53 Mdm2 ATM  is reached quickly 

through over-damped oscillations. In figure  5 we show the numerical solution 
of equation  (29) and the results of the Gillespie algorithm using the parameters 

= −→
k h(0.99, 1, 0.44, 0.69, 0.85, 0.5, 0.5, 0.1, 0.4) 1. In the left panel of the figure we plot 
the first 30 h of the simulations, and compare them with the mean-field solutions. It is 
clear that while the over-damped oscillations die out very fast, the stochastic fluctua-
tions are sustained by a large period of time. This is represented in the right panel in 
the same figure where these fluctuations are shown for up to 110 h.

To characterize these oscillations we use again the power spectrum of the Gillespie 
results and compare them with the predictions from the LNA. In figure 6 we show with 
points this power spectrum and with a continuous line the predictions from the LNA. 
As in the previous section, in the inset we plot the tail power spectrum in a logarith-
mic scale, showing again a linear dependency with ω1/ . Notice the good coincidence 
between the numerical simulations and the LNA.

We may also compare our results with figure 3 in [9]. Again, our model may repro-
duce qualitatively and quantitatively the experimental observations: the existence of a 
characteristic frequency ( f    =   0.14 h−1), compatible with the experimental results and 
larger that in the basal state, and a divergence close to zero frequency. The param-
eters were intentionally chosen to resemble the experiments. As before, the character-
istic frequency of the oscillations is essentially defined by −k k2 3 and k4. We fit the 
expected experimental frequency ( f    =   .14 h−1) [9], increasing (decreasing) k4 (k5) with 
respect to the model in the basal state to resemble the experimentally verified fact that 
under DNA damage the degradation rate of Mdm2 increases and the Mdm2-mediated 
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degradation rate of p53 decreases [31]. Moreover, to reproduce the divergence at low 
frequency of the model we noticed that it is associated with the parameters character-
izing the new feed-back loop. It can be interpreted looking to the low frequency analyti-
cal expression of the power spectrum derived from the LNA. It has the non-trivial form:

→ ∼
−

P w
k k

k k k k k k
( 0)

2
p53

5 7

1 6 8 2 5 7
� (32)

that nonetheless guarantees, if the denominator is small enough, a large value for the 
power spectrum. With this expression, the numerical results of the previous section and 

Figure 5.  Typical run showing the oscillations of p53 in the presence of DNA 
damage. Left panel: The first hours of oscillations. It should be notice the fast 
damping predicted by the mean-field model. Right panel: Long time dynamics. The 
bold curve indicates the mean field solution and the thin one are results from the 

Gillespie simulation. Parameters: = −→
k h(0.99, 1, 0.44, 0.69, 0.85, 1.5, 1.5, 0.1, 1.0) 1.
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Figure 6.  The points represent the power spectrum obtained after averaging over 200 
realizations of the Gillespie algorithm. The continue line is the prediction from the 
LNA. Note the existence of a characteristic frequency of oscillations and a divergence 

close to zero frequency. Parameters: = −→
k h(0.99, 1, 0.44, 0.69, 0.85, 1.5, 1.5, 0.1, 1.0) 1.
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previous estimates from the literature, it was easy to choose values for the parameters 
that reproduce the divergence of the experimental data and the correct frequency of 
resonance (see table 2). However, we want to stress that there is still a lot of freedom 
in the parameter selection and our interest here was not to find the best ones, but 
just to show that this approach provides a straightforward path to obtain a quantita-
tive comparison between our theoretical model and the experimental data. It must 
be noticed that excluding the parameters that were fixed to reproduce the divergence 
at low frequency and the peak in the power spectrum, variations within a 10% of the 
values reported in table 2 reproduce curves qualitatively similar to figure 6. All these 
values compare very well with previous theoretical estimates of equivalent parameters 
in similar models, as presented also in table 2.

Oncogenic response

Another important pathway for the activation of p53, comes from the activation of 
the p14ARF protein. In the presence of oncogenes this protein is activated and joins 
Mdm2 accelerating its degradation [32]. This process leads to the increase of p53 
level in the cell. Unfortunately, as far as we know there is no experimental evidence 
for the single cell dynamics of p53 and Mdm2 in the presence of oncogenes, therefore 
some of the parameters used in this section lack of experimental bias. Nevertheless 
we will show that independently of the values used, the power spectrum of the fluc-
tuations is qualitatively different from the one obtained when p53 interacts directly 
with ATM.

The model of oncogenic response is sketched in figure 7. To the standard interac-
tions present in the basal model we add the regulation of p14ARF to Mdm2 and a regu-
lation of p14ARF by p53. In terms of stochastic transitions we have now:

⟶+ p
W

pMdm2 14 14ARF 6 ARF� (33)

⟶+p p
W

p14 53 53ARF 7� (34)

⟶ Φp
W

14ARF 8� (35)

Table 2.  Comparison between our predictions for the values of the parameters 
of the model and similar estimates in the literature, Model VI in [8] and a cross-
regulated linear model in [9].

Parameter h−1 This work Literature

k1 0.99 ±0.29 .03% [9], 1.20 [8]
k2 1 ±2 .5% [9], 0.8 [8]
k3 .44 ±.45 .03% [9], ±1.40 20% [8]
k4 .69 ±.28 .02% [9]
k5 .85 ±.55 .05% [9]
k6 .5 = ±k k .65 .056 7 % [9]
k7 .5 = ±k k .65 .056 7 % [9]
k8 .4
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⟶p
W

p14 2 14ARF 9 ARF� (36)

and defining the transition rates as:

= ΩW k x x6 6 p14 Mdm2� (37)

= ΩW k x x7 7 p53 p14� (38)

= ΩW k x8 8 p14� (39)

= ΩW k x9 9 p14� (40)

we obtain the following system of equations for the dynamic of the model:

= − −

= − −

= − −

x

t
k x k x k x x

x

t
k x k x k x x

x

t
k x k x k x x

d

d
d

d
d

d

p53
2 p53 3 p53 5 p53 Mdm2

Mdm2
1 p53 4 Mdm2 6 p14 Mdm2

p14
9 p14 8 p14 7 p14 p53

�

(41)

Figure 7.  Sketch of the p53-Mdm2 feedback loop in the presence of DNA damage. 
The protein p53 activates Mdm2 and Mdm2 suppresses p53. Moreover. the ATM 
activates p53 that in turn regulates ATM.
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which again depending on the parameters may show three fixed points: (0, 0, 0), 

( ), , 0
k k

k k

k

k
2 4

1 5

1

5
 and −( ( ))k k, ,

k

k

k

k k k

k k k

k

1
2 4

9

7

2

5 2 6

9 1 5

7
. To simplify the notation we have used 

= −k k k2 2 3 and = −k k k9 9 7.
The Jacobian matrix near these fixed points takes the form:

=











− −

− −

−











J

k k x k x

k k k x

k x k

* * 0

*

* 0

2 5 Mdm2 5 p53

1 4 6 Mdm2

2 p14 9

� (42)

that evaluated in the fixed point { }x x x* , * , *
p53 Mdm2 p14  leads to the following secular 

equation:

λ λ λ+ +










+ − =k
k k k

k

k k k

k
k k k 03 2

4
9 1 5

7

9
2

5 1

7
2 9 4� (43)

which defines a phase diagram qualitatively similar to the one discussed in the preced-

ing section. Three regions, but only one of them, with solution { } ≠
→

x x x* , * , * 0p53 Mdm2 p14  

displays damped oscillations. Our previous results suggest that this is the relevant 

region for our purposes. In this region we used =
→
k (1.0, 1.0, 0.44, 0.69, 0.85, 0.5, 0.5, 0.4) 

as parameters to obtain damped oscillations in the mean field solution of the problem 
and sustained oscillations through the Gillespie algorithm. The results are shown in 
figure 8.

In figure  9 we show the power spectrum obtained using the LNA and the one 
obtained from the simulations. Also for this model, the LNA approximation correctly 
describes the results of the simulation. As before a clear peak representative of the 

Figure 8.  Typical run showing the oscillations of p53 in the presence of oncogenic 
signals. The bold curve indicates the mean field solution and the thin one are results 

from the Gillespie simulation. Parameters: =
→
k (1.0, 1.0, 0.44, 0.69, 0.85, 0.5, 0.5, 0.4).
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feed-back loop between p53 and Mdm2 is observed and also the exponential decay of 
the tail of the power spectrum with ω1/ . However, there is no evidence of a divergence 
at small frequencies.

This absence of the divergence is independent of the parameters chosen. It can be 
understood looking again to the structure of the power spectrum predicted by the LNA 
at small frequencies. For this model:

→ =
+

P w
k k k

k k
( 0)

2 ( )
p53

5 1 2

1
2

6
� (44)

that indicates that only when k1 or k6 are zero, i.e. only when the regulation of Mdm2 
by p53 or the interaction between Mdm2 and p14ARF disappears we have a diverg-
ing power spectrum at small frequencies. But in this case our model of interactions 
breaks down.

Discussion

The fact that noise is part of cellular systems has been known for many years. Noise, how-
ever may come from many sources and it is not a simple procedure to unveil which is the 
relevant one in a specific process. In cell populations the randomness is usually hidden in 
the average measurement making hard, if not impossible, to trace back the main source 
of stochasticity. But also results from single cell measurements should be interpreted with 
great care. External sources of noise are always present, for example when irradiating a 
population of cells one can never guarantee which one was really affected and how much, 
but even within the same culture, cells sense different local environments responding dif-
ferently to apparently similar external conditions. Protein degradation and production 
rates, which in biology are processes usually parametrized with one number each, may 
vary, from cell to cell, but also within each cell in different conditions. Moreover, when 

Figure 9.  The points represent the power spectrum obtained after averaging over 200 
realizations of the Gillespie algorithm. The continue line is the prediction from the 
LNA. Note the existence of a characteristic frequency of oscillations and a divergence 

close to zero frequency. Parameters: =
→
k (1.0, 1.0, 0.44, 0.69, 0.85, 0.5, 0.5, 0.4).
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the processes of interest involve a small number of molecules, also the stochasticity due 
to small size fluctuations may become relevant. Then, the only way to choose among 
the different alternatives is to build model systems and to compare its possible outputs 
with experimental data. In this section we first introduce some previous approaches to 
the problem that may be helpful to put our work in context and then discuss our results.

As already explained in the introduction the p53-Mdm2 module has been the sub-
ject of many theoretical and experimental studies, but it was not until the single cells 
experiments developed in the last few years [7–10] that the presence of sustained oscil-
lations were considered as a relevant phenomena in this system.

Early attempts to describe these oscillations essentially generalized known mean-
field descriptions of the module dynamics. For example in the work of Tiana et al [15] 
the authors considered simple mean-field equations for the concentration of the pro-
teins but assumed a time delay in the interaction between p53 and the Mdm2, this time 
delay was associated to the transcription process of the Mdm2. Following a completely 
different perspective Elias et al [33] considered the module in the presence of another 
protein, Wip1, that is also regulated by p53. In addition, both negative feed-back 
loops, p53-Mdm2 and p53-Wip1, belong to different interacting compartments of the 
cell. Within the same spirit , in reference [34], the authors extend the basic p53-Mdm2 
model with new equations differentiating p53 and Mdm2 inside and outside the cellular 
nucleus and took into account the effect of the irradiation in the DNA damage. A more 
sophisticated road was followed in reference [35], where the authors developed a com-
pleted spatio-temporal model in which the diffusion of the molecules in the cell is taken 
into account through partial differential equations. In all these cases the models sustain 
the oscillations of p53 and the Mdm2, and their dephasing, but fail to predict the het-
erogeneity in the dynamical responses within single cell experiments, for example, the 
differences in amplitudes of the oscillations from cell to cell, or in time within a given 
cell. To account for these effects within these kind of models one must add, ad hoc, 
some sort of stochasticity in the parameters of the models.

This was the approach followed in references [13, 36] and by Zatorsky and collabo-
rators in [8, 9] where the authors analyzed several stochastic models inspired in previ-
ous mean field descriptions trying to reproduce their own experimental data. Their 
results suggest that the low frequency noise (6–12 h) in the production rates of the pro-
teins is a good candidate to explain the experimental data. Moreover, the best results 
are obtained for a model that includes a delay in the translation of Mdm2(in the same 
spirit of Tiana et al [15]). However this approach suffers from the lack of a formal jus-
tification. It starts with the assumption that the macroscopic equations describing the 
dynamics of p53-Mdm2 module are correct and then introduce a biologically motivated 
noise. As we already discussed the first assumption is valid only when the number 
of molecules involved is large. But also the ad hoc introduction of a noise in equa-
tions for macroscopic variables is usually not mathematically justified and may produce 
unwanted errors. To introduce the noise one must consider all the relevant long time 
correlations within the macroscopic equations of the problem, and this is certainly not 
the case here, (see [37] for an accurate discussion on this issue).

Alternatively and as previously mentioned the role of finite size fluctuations were 
also considered to explain the dynamics of the p53-Mdm2 module [17–19]. Already in 
reference [25] it was clear that these kind of fluctuations could produce resonance-like 
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effects in similar models. The rationale behind the phenomena is well established, the 
white noise induced by finite-size fluctuations resonates with the characteristic fre-
quency of the system. Our results are in line with these previous predictions They feed 
the intuition that, provided that it resonates with the characteristic frequency of the 
feed-back loop, any source of noise is sufficient to sustain oscillations over long times.

However, in addition our results provide (as far as we know) the first quantitative 
comparison between real biological experiments and a model where finite size fluctua-
tions are the one responsible of sustained oscillations. This comparison is strengthen 
here by two facts. First, the main properties of the experimental data i.e. the charac-
teristic frequencies of the oscillations and the divergence of the power spectrum in the 
presence of damage are fixed, within the Linear Noise Approximation, through analyti-
cal relations that set the range of parameter values allowed. This is something absent in 
previous approaches [17, 18]. Second, the actual values of the parameters used to fit the 
data are biologically reasonable and compare very well with previous experimental and 
numerical values in the literature. Moreover, we have already shown in [19] that the 
introduction of an intermediary for the transcription of Mdm2 acts, within this finite 
size approximation, as a a mechanism that delays the production of Mdm2, producing a 
dephasing between the oscillations of p53 and the Mdm2, in the same spirit of [8, 15, 
33]. All these results support the idea that finite size fluctuations are a plausible mecha-
nism to be responsible of the sustained oscillations in the p53-Mdm2 module. Further 
experimental tests may help to solidify this. For example, a straightforward conclusion 
of our analysis is that, independently of the model, the frequency of the oscillations 
depends only on the production rate of p53 and the degradation rate of Mdm2, it could 
be interesting to design new experimental protocols to test this prediction.

Conclusions

We studied, using analytical tools (LNA) and numerical simulations (Gillespie’s algo-
rithm) the p53-Mdm2 module in its basal state, in the presence of DNA damage and of 
oncogenic signals. The module is studied as a stochastic system where finite size effects 
are relevant and responsible of the fluctuations in the number of molecules. Our model 
quantitatively reproduces the experimental values for the frequency of the oscillations 
in the basal state and in the presence of stress. The approach also explains the sharp 
increase at low frequency of the power spectrum of the fluctuations in the presence 
of stress, allowing a clear connection between these results and the parameters of the 
model. Moreover, it is easily extensible to reflect also the dephasing between the oscilla-
tions of Mdm2 and p53 proteins. Our results suggest that the intrinsic noise due to the 
finite size of the populations of p53 and Mdm2 is the main responsible of the sustained 
oscillations in the response of the p53-Mdm2 circuit.
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Appendix A

A.1. Linear Noise Approximation

The quantities characterizing the number of particles in our problem are discrete. The 
deviation of this number from the expected mean value produces fluctuations usually 
called intrinsic noise because it is not caused by any external source. When the system 
is small enough, this intrinsic noise is not negligible, and a mean field approximation 
can not be taken.

In these cases, the correct way to describe the system is to solve the Master 
Equation that governs it:

��
�� ���� ��

���
���

��

� ����

�
∑

∂
∂

= → − →′
≠ ′

′ ′

P n t

t
P n t W P n t W

( , )
( ( , ) ( , ) ).

n n
n n n n� (A.1)

This is an equation for the change in time of the probability →P n t( , ) of being in the 

state →n at the time t, and it rests upon the Markovian hypothesis. →→
′→W

n n
 are transition 

rates from states →n to 
→

′n .
An important difficulty in solving the Master equation arises from the discreteness 

of the variables involved (→n). Its solution is obtained by analytical methods in very 
lucky situations. An approximation scheme that allows to get some information from 
it, is the linear noise approximation (LNA).

This approximation assumes the possibility of studying the number ni of integrands 
of the ith population as a main part Ωxi that represents the mean value of the popula-

tion size, plus a small deviation αΩ i that represents the fluctuations around the mean 
value, and that is proportional to the square root of the system size Ω. In this way:

α= Ω + Ωn x .i i i� (A.2)

As every process that takes place in the system causes variations of one or more 
integrands in the populations of the species involved, it is useful to write the master 
equation in terms of these discrete fluctuations. For this purpose let us define the step 
operator as:

… … = … + …E f n f n k( , , ) ( , , ).i
k

i i� (A.3)

In terms of this operator the master equation reads:
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where Wj is the microscopic reaction rate for the jth process and Sij is the element 
(i, j) of the stoichiometry matrix S, the magnitude of the change in the ith population 
when the jth process takes place. The total number of different populations that form 
the system is N, and M is the total number of different kinds of processes that can take 
place in the system.

In terms of the fluctuations, which are continuous variables, the step operator takes 
the following form, more suitable for an analytic treatment

α α
≈ +

Ω
∂

∂
+

Ω
∂

∂
+ …E

k k
1

2
i
k

i i

2 2

2� (A.5)

in this way, we can work with a continuous operator, and still not lose the stochas-
tic features of these processes. With it
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(A.6)

Now we are going to replace the probability →P n t( , ) by the probability αΠ → t( , ) of 

being αΩ → away from the mean field prediction

α α= Ω + Ω = Π→ → → →( )P n t P x t( , ) ( , )� (A.7)

We know that:
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with this results we can obtain the relation
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If now we expand the transition probabilities per unit time around →x
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(A.9)

Substituting (A.6) and (A.9) in the master equation (A.4) and using (A.7), after 
grouping the coefficients of the similar powers of Ω we find:
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If now we compare the coefficients of the similar powers of Ω in equations (A.10) 

and (A.8), where the unit of time has been changed from t to τ =
Ω
t
 we find for the 

leading order:
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� (A.10)

This corresponds to the deterministic rate equations that are often used to describe 
the dynamics of such systems at a mean-field level. It has been discussed already in the 
subsection referring to mean field equations and stability analysis.

For the coefficients of Ω−1 the relation reads:
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where
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is the jacobian matrix of the system, and

∑=
=

→D S S W x( ).ik

j
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ij kj j

1
� (A.13)

Equation (A.11) is a Fokker-Plank equation for the probability for the system to 

have the deviation αΩ → around the mean-field prediction. This equation can be writ-
ten in a completely equivalent formulation more benevolent to investigation using 
Fourier transforms. The problem can then be formulated as the set of stochastic dif-
ferential equations of the Langevin type:

∑
α
τ

α η= +
=

A t
d

d
( )i

k

N

ik k i
1

� (A.14)

where η τ( )i  is a Gaussian noise with 0 mean and correlation given by 
η τ η τ δ τ τ= −′ ′D( ) ( ) ( )i k ik .
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This a linear Langevin equation that can be easily solved in the Fourier representation

∑α η= Φ−w wˆ ( ) ˆ ( )i

k
ik k

1

� (A.15)

where δΦ = −iw Aik ik ik. From α wˆ ( )i  one can get the the power spectrum of the fluc-
tuations as:

⟨∣ ∣ ⟩ ∑ ∑α= = Φ Φ− −P w w D( ) ˜ ( ) *i i

j k
ij ik jk

2 1 1

� (A.16)

A.2. Power spectrum in the basal state

Now we are going to analyze the general expression for the power spectrum (A.16) for 
the basal state. The analytics for the other two models develops following the same 
steps, with a more cumbersome Algebra

†∑ ∑ω ω ω∝ Φ Φ
= =

− −P D( ) ( ) ( ) ( )i

j

N

k

N

ij jk ki
1 1

1 1
� (A.17)

Since ωδΦ = − Ai ik ik and since A and D are independent of ω, ωP( )i  is a fraction, 
the numerator and the denominator have both a polynomial structure of order 2N. The 

explicit form of the denominator is: ∣ ∣ωΦdet ( ) 2.
Then, we expect that the enhancement of the fluctuations would be in the values of 

ω that minimize the denominator. Now we are going to analyze the general expression 
for the denominator of the power spectrum, and show explicit expressions for the basal 
response.

The matrix A in the expression of Φ is the jacobian matrix which can be written in 
terms of the eingenvalues, then we can write:
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This form for the power spectrum shows clearly the existence of a resonance: for a 
specific value of ω2 the denominator becomes small, and the power spectrum has a large 
peak centered on this frequency. The condition ω ω =Pd ( )/d 0i  gives:
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ω ω ω− + =A A2( det( ))2 2 (Tr( )) 02 2
� (A.21)

Then the condition (A.21) simply becomes: ω = −Adet( )
A2 (Tr( ))

2

2

, it implies that: 

>A A2det( ) (Tr( ))2, this condition in terms of the stability matrix implies that the 
eigenvalues of A are complex. It means that if the power spectrum has an extreme the 
stability matrix has complex eigenvalues.

Replacing in the expression for the power spectrum the eigenvalues for the model of 

the system in basal conditions: λ = + −−
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ωP( )i  has an extreme in ω = −k k
k

4 2 2
4
2

As we can see, the imaginary part of the eigenvalues λ(Im[ ])1,2  and the value of fre-
quency where ωP( )i  has an extreme are similar. Now we are going to write it in a more 
clearly way:
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The above Taylor expansion may be a good approximation if we take into account 

that for the corresponding values of the parameters < < 0.5
k

k k

k

k k4 2
4
2

2 4

4
2

2 4
.

In the same way:
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Summarizing, the power spectrum of the fluctuations has a maximum at a fre-
quency close to the imaginary part of the eigenvalue that characterizes the frequency 
of the damped oscillations in the deterministic regime.
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