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Abstract – Using a 3D Lagrangian tracking technique, we determine experimentally the trajec-
tories of non-tumbling E. coli mutants swimming in a Poiseuille flow. We identify a typology of
trajectories in agreement with a kinematic “active Bretherton-Jeffery” model, featuring an axi-
symmetric self-propelled ellipsoid. In particular, we recover the “swinging” and “shear tumbling”
kinematics predicted theoretically by Zöttl and Stark (Phys. Rev. Lett., 108 (2012) 218104).
Moreover using this model, we derive analytically new features such as quasi-planar piecewise tra-
jectories, associated with the high aspect ratio of the bacteria, as well as the existence of a drift
angle around which bacteria perform closed cyclic trajectories. However, the agreement between
the model predictions and the experimental results remains local in time, due to the presence of
Brownian rotational noise.

Copyright c© EPLA, 2019

Understanding the motility and spreading of microorgan-
isms in complex environments, sometimes undergoing sig-
nificant flow variations, is relevant to many fundamental
and technological issues. For instance, this is a crucial
question in the context of medicine, as motility can control
several physiological functions (e.g., spermatic transport
in biological channels [1–3], upstream contamination of
urinary tracks [4–6] or virulence factors [7]). It is also
relevant to technologies of drug delivery [8] and envi-
ronmental studies aiming to understand the spreading of
bio-contaminants in soils [9] or the building of ecological
niches [10].

At the micro-hydrodynamical level, many models aim-
ing to describe the transport processes of micro-swimmers
in flow are based on a simple representation initiated by
Jeffery [11] and later completed by Bretherton [12]. The
Bretherton-Jeffery (B-J) description assesses the changes
of orientation of an axisymmetric ellipsoid in a Stokes
flow, performing so called Jeffery orbits. The active
version of the model (aka “the active B-J model”) is

(a)Present address: Department of Biomedical Engineering, The
Pennsylvania State University - University Park, PA 16802, USA.

completed with a swimming velocity added to the local
flow velocity [13]. In the active B-J model the ellipsoid
orientation determines the swimming direction and the
orientation dynamics thus directly translate into complex
particle trajectories. Passive particles in contrast do not
cross streamlines and are merely transported downstream
with the flow while tumbling with the velocity gradient.
In the presence of Brownian rotational noise, orientation
distributions can be determined for passive particles in
flows [13–15]. By including noise in the kinematic equa-
tions, the active B-J model is the base for many recent
statistical-mechanics studies or hydrodynamic dispersion
models [13]. This is for example used to describe the emer-
gence of a viscous response for active fluids [13,16] or the
mean transport properties of bacteria in microfluidic chan-
nels [17–21]. It can also serve to understand the motion of
microorganisms in the presence of an external field such as
magnetotactic bacteria moving in a flow in the presence of
a magnetic field [22,23], an algae in a light intensity gradi-
ent [24] or in a gravity field for bottom-heavy strains [25].

Interestingly, from an in-depth analysis of these kine-
matic equations without noise, Zöttl and Stark [26,27]
identified mathematical features and associated them with
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the emergence of cycloid trajectories. In some cases the
kinematics can be mapped onto a dynamical Hamiltonian
problem with conserved constants of motion [26,27]. This
model relies on a simplified vision of the bacterial shape
and swimming behavior. For instance, the chirality of the
bundle responsible of rheotactic effects [28,29] or the flex-
ibility of the flagella [30–32] are neglected.

Despite the importance of this fundamental model, ex-
perimental validation and proof of its applicability to bac-
terial trajectories is still lacking. Tracking experiments of
bacteria under flow have already been performed in 3D [33]
but no B-J trajectories have been reported. A first ex-
perimental observation of these trajectories has been per-
formed by Rusconi et al. [18] but only in the form of a 2D
projection. Bacterial trajectories being 3D no full charac-
terization of the dynamics and no direct comparison with
the active B-J model could be performed.

In this letter, we investigate experimentally the 3D
motion of Escherichia coli (E. coli) bacteria in a plane
Poiseuille flow. We use a strain for which the tum-
bling process is inactivated and reorientation is due to
the hydrodynamic shear and Brownian noise. Using a
Lagrangian tracking device [34,35], we identify the ty-
pology of many experimental 3D trajectories at different
flow rates and compare them with the simulated trajec-
tories stemming from the noiseless B-J model. Thanks
to the 3D observation of the trajectories, we identify fea-
tures such as swimming planes and drift angles, providing
a better understanding of bacterial transport under flow.
We derive several analytic solutions from the B-J model
allowing a precise comparison with the experimental ob-
servations. Overall, we find good agreement between the
experimental tracks and the theoretical predictions of the
B-J model. The agreement seems robust despite the pos-
sibly more complex shape and swimming properties of real
bacteria when compared to the simplified assumptions of
an ellipsoid swimmer model. However, this agreement re-
mains local in time due to the cumulative influence of the
rotational noise on the trajectory.

Set-up and protocol. – The measurements take
place in a microfluidic channel of rectangular cross-section
(height h = 100μm, width W = 600μm), made in Poly-
dimethylsiloxane (PDMS) using standard soft-lithography
techniques. Flow is imposed through the channel via a
Nemesys syringe pump (dosing unit Low Pressure Syringe
Pump neMESYS 290N and base Module BASE 120N). We
set our region of interest in the center of the channel with
respect to its width and consider only trajectories which
are at least 100μm away from the lateral walls.

The channel is visualized using a home-made La-
grangian tracking microscope [34] here used to track fluo-
rescent swimming bacteria as well as passive tracers used
for an accurate determination of the fluid velocity profile
in the channel. By a visualization based feedback acting
on a mechanical (horizontal) and piezoelectric (vertical)
stage, the targeted object is kept close to the center of
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Fig. 1: (a) Experimental set-up: a syringe pump injects
a bacterial suspension at constant flow rate into a channel
of rectangular cross section (height h = 100 μm and width
W = 600 μm). (b) Velocity profiles, vx(z), obtained by track-
ing of tracer particles (x is the flow direction). From blue to red
the flow rates are Q = 1, 2, 3, 4, 5, 6 nL/s. (c) Example of a 3D
track of Δ-CheY E. coli mutant (smooth swimmer) obtained
at Q = 1 nL/s. x, y and z have been made dimensionless using
the channel height h whereas vx is given in μm/s.

the visualization field and in focus on an inverted micro-
scope (Zeiss-Observer, Z1 with an objectif C-Apochromat
63×/1.2W). Images of the tracked objects are acquired
at 100Hz with a Hamamatsu Orca-flash 4.0 camera. Si-
multaneously, the three-dimensional positions of the ob-
ject are recorded. Figure 1(b) shows flow velocity profiles
vx(z) obtained by tracking fluorescent beads of diameter
1μm. Each dot is the mean velocity of a tracked bead, the
dashed lines are parabolic fits used to obtain the maximal
velocity at the center of the channel, VM .

The bacteria used here are smooth swimmer mutants
of an E. coli (strain CR20, Δ-CheY) that almost never
tumble and were transformed with a plasmid coding for
a yellow fluorescent protein (YFP). Bacteria are grown
overnight at 30 ◦C until the early stationary phase. The
growth medium is then removed by centrifuging the cul-
ture and removing the supernatant. The bacteria are re-
suspended in a Motility Buffer (MB) below the very low
concentration of 3 × 107 bacteria per mL, in order to
visualize one bacterium at a time and to minimize the
interactions between bacteria. The suspension is supple-
mented with L-serine at 0.08 g/mL and polyvinyl pyrroli-
done (PVP) at 0.005%; L-serine maintains good motility
for a few hours and PVP is used to prevent bacteria from
sticking to surfaces. The solution is also mixed with Percol
(1:1) to avoid bacterial sedimentation. The experiments
are performed at a temperature of 25 ◦C.

Hundreds of trajectories are recorded at different flow
rates Q, ranging from 1 to 6 nL/s, corresponding respec-
tively to VM between (28± 1.9)μm/s and (168± 5.4)μm/s
and maximal shear rates γ̇M = 4VM/h between (1.12 ±
0.076) s−1 and (6.72 ± 0.22) s−1. Here we focus on bulk
trajectories that are at least 5μm away from the top and
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Fig. 2: Typology of different 3D bacterial trajectories in Poiseuille flow projected in the shear plane z-x for different values of the
parameters A = Vb/4VM and β. (a) Experimental trajectories: for each type of trajectory (different colors) two experimental
trajectories are shown: from left to right: A = 0.067, 0.062 (orange), A = 0.15, 0.057 (red), A = 0.072, 0.053 (light blue) and
A = 0.031, 0,020 (dark blue). (b) Numerical trajectories: from left to right: A = 0.068, 0.15, 0.072, 0.031 and β = 0.95, 0.95,
0.95, 0.80. 4 types of trajectories are observed: i) beginning and ending at the same wall (red), ii) starting and ending at a
different wall (orange), iii) performing cycloid motion in a half-channel (dark blue) and iv) in the whole channel (light blue).
For the numerical trajectories the values of β have been chosen such as to reproduce qualitatively the experimental trajectories.

the bottom walls. Surface effects are known to modify
bacterial trajectories close to channel walls [29,36] but
are not the focus of the present paper. They also play
a role in setting the initial conditions of bulk trajecto-
ries through bacteria take off from the surfaces. The in-
stantaneous swimming velocity is obtained for individual
bacteria by removing the local flow velocity from the La-
grangian bacterial velocity. For each track, this instanta-
neous swimming velocities follow a Gaussian distribution,
and its mean gives the swimming velocity Vb. The aver-
age over all tracks is 〈Vb〉 = (25±5)μm/s. The bacterium
orientation is then obtain by dividing the instantaneous
swimming velocity by its magnitude.

Typology of experimental trajectories. – Under
flow, a significant number of bacterial tracks were recorded
and classified into 4 categories: i) trajectories starting and
ending at the same channel wall, ii) trajectories starting
from a wall and crossing the mid-plane (z/h = 1/2) to
reach the opposite wall, iii) trajectories oscillating in a
half-channel below or above the mid-plane and iv) trajec-
tories oscillating in the bulk and crossing the mid-plane re-
peatedly. Figure 2(a) shows examples of such trajectories.
The cycloid-like trajectories of type iii) and iv) correspond
to the shear tumbling and swinging trajectories predicted
theoretically by Zöttl and Stark [27]. Note that trajecto-
ries starting and ending at channel walls are frequent in
our experiments. As smooth swimmer bacteria spend a
significant time at the solid boundaries, many trajectories
recorded were indeed initiated at a channel wall.

The active Bretherton-Jeffery model. – Under
the B-J assumptions, the body of the microorganism is
modeled as an ellipsoid of length l and diameter e, swim-
ming at a velocity Vbp. The effective ellipsoid coor-
dinates are its centroid position r = (x, y, z) with an
orientation vector p = (cos θ, sin θ cos φ, sin θ sinφ) (see
fig. 3). The velocity of the ellipsoid is then the vec-
torial sum of the swimming velocity and the local flow

x Flow
y

z

φ

θ
x

ze

l
= Vb

p
Vp p

Fig. 3: Parametrization of an effective ellipsoid swimming in a
Poiseuille flow.

velocity: V = Vbp + v. The Bretherton-Jeffery deriva-
tion describes also how an axisymmetric ellipsoid of aspect
ratio r = l/e is reoriented in a Stokes flow with a
strain-rate tensor E = (1/2)

[
∇v + (∇v)T

]
and a rota-

tion rate tensor Ω = (1/2)
[
∇v − (∇v)T

]
. In the absence

of rotational noise, the kinetic equation governing p is:
ṗ = (I − pp)(βE + Ω)p, with I the identity tensor and
β = (r2 − 1)/(r2 + 1) the Bretherton parameter. For a
Poiseuille flow v = 4VM (1 − z

h ) z
hex, the trajectories are

controlled by the dimensionless parameters A = Vb/4VM

fixing the ratio between the bacterium velocity and the
maximal flow velocity and β. In the following, we rescale
all distances by the channel height h and time with γ̇M .
The swimmer positions and orientations are then given
by five coupled dynamical equations (consistent with the
equations presented in [27]) implying three adimensional-
ized position coordinates (x(t), y(t), z(t)):

ẋ = A cos(θ) + z(1 − z),
ẏ = A sin(θ) cos(φ),
ż = A sin(θ) sin(φ),

(1)

and two angular coordinates θ and φ:

θ̇ =
1
2

sin(φ)[β cos(2θ) − 1](1 − 2z),

sin(θ)φ̇ =
1
2
(β − 1) cos(φ) cos(θ).

(2)
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Fig. 4: Example of a type iv) swinging trajectory (see fig. 2) computed using A = 0.04 and β = 0.95. In the y-z plane (green)
the bacterium swims with two nearly constant angles φc or 2π − φc. In the x-y plane (blue), one observes the cycloid-like
trajectory with a drift angle ψ. By rotating the trajectory by the drift angle ψ (computed using the analytical expression given
by eq. (3)) around the z-axis, the trajectory collapses in the λ-z plane into a closed orbit (in pink).

Fig. 5: Projection in the y-z, x-y and z-λ planes of experimental (blue lines) and numerical trajectories (red lines). The numerical
trajectories are computed using the parameter A determined experimentally and using as initial conditions the positions and
angles of the bacterium in the middle of the track considered. The only fitting parameter is β. The projection in the λ-z plane
is performed using the value of ψ computed with eq. (3). (a) type ii) trajectory (β = 0.90 and A = 0.059). (b) type iii) swinging
trajectory (β = 0.95 and A = 0.045). (c) type iv) shear tumbling trajectory (β = 0.86 and A = 0.19).

Model predictions and comparison to experi-
mental observations. – Using the active B-J model
without noise, we first numerically determine typical bac-
terial trajectories. We then derive closed-form expressions
for the phase portraits z(θ) and φ(θ) as well as an analyt-
ical expression for the bacterial drift angle ψ with respect
to the flow direction. We call z0, φ0 and θ0 the set of ini-
tial conditions. The model predictions are then compared
to experimental observations. Note that surface effects
are neglected in our model and quantitative comparisons
will only be performed on bacterial trajectories that are
at least 5 μm away from the top and the bottom walls.

Trajectories. As no closed-form solutions are avail-
able for the B-J model we solve the model numerically.

The numerical trajectories displayed in figs. 2, 4 and 5,
are obtained by numerical integration of eqs. (1) and (2)
simply using an Euler scheme. Typical experimental ob-
servations are reproduced by the numerical trajectories as
can be seen from fig. 2 where all trajectory types observed
are displayed. The detailed properties of these trajectories
are discussed below.

Swimming in planes of nearly constant angles. An im-
portant remark can be made from the angle variations φ̇ in
eq. (2). For strongly elongated particles, i.e., β → 1, the
angle derivative is almost zero unless the angle θ reaches
values of 0 or π. This property actually corresponds to a
swimmer motion dwelling very close to a plane of constant
angle φc until a flip occurs for particle orientations close to

44003-p4



Swimming bacteria in flow

θ = 0 or π in order to set the motion into the mirror plane
defined by φ = 2π −φc. In the y-z plane perpendicular to
the flow direction x, these planes appear as lines of direc-
tions φc and (2π−φc). The φc values are of course fixed by
the initial conditions. These fixed planes hosting the bac-
terial motion, can be seen as a consequence of the absence
of shear in the y-direction. In fig. 4, we display a numeri-
cal trajectory of type iv) performing swinging motion, as
well as its projection onto various planes. The planes of
constant angle φ are clearly illustrated by the y-z pro-
jection (in green). Figure 5 shows different experimental
and numerical trajectories (type ii), iii) and iv)) projected
into the same planes as in fig. 4. From the projections
into y-z (first column), one can clearly observe a tendency
for a bacterium to swim in planes of nearly constant an-
gle φ and also the presence of subsequent flipping between
mirror planes. Hence this good agreement between the
experimental observations and the simulations indicates
that the smooth E.coli swimmers are well modeled by a β
value close to 1, corresponding to very elongated objects.

Drift angle ψ. For the numerical trajectories of
type iii) and iv), i.e., for bacteria traveling in the bulk
without touching the walls, another feature can be no-
ticed. When projected into the x-y plane (see, for ex-
ample, fig. 4), these trajectories oscillate around a mean
direction different from the flow direction hence defining
a “drift angle” ψ. This drift can be seen as the ratio of
two displacements, one along or against the flow (the lat-
est resulting from bacteria swimming upstream) and an
a transverse displacement solely due to the bacterial ac-
tivity. The corresponding trajectories are periodic in z
(see fig. 2) and correspond to closed trajectories in the
(z, θ, φ) phase-space with a time periodicity T . Due to
the bacterium activity and the dependence on z of the
local shear, this period T will be different from the pe-
riod of the classical Jeffery orbit. Starting from a point in
the (z, θ, φ) phase space, we define the period T as the
time to go back to this point. Since ẋ and ẏ only depend
on z, θ and φ (all periodic functions), one can then de-
fine the displacements over one period T , along the flow,
Δx, and perpendicular to the flow, Δy. The expressions
of these two displacements are obtained by direct integra-
tion of eq. (1) and their ratio yields an expression for the
tangent of the drift angle ψ. In the Supplementary Ma-
terial (Supplementarymaterial.pdf (SM)), we detail a
closed-form derivation for the displacements Δx and Δy
and show how an analytical expression for tanψ can be
obtained. Then the tangent of the drift angle

tan ψ = f(A, β, z0, θ0, φ0), (3)

is parametrized by the dimensionless numbers of the prob-
lem, A, β and the initial trajectory conditions z0, θ0, φ0.
From the projection of the numerical trajectory of type
iv) into the shear plane x-y in fig. 4 the drift angle ψ
is clearly identified. We define the μ, λ-coordinates as
shown in fig. 4, respectively along and perpendicular to

the drift direction. We then obtain a remarkable prop-
erty by projecting the trajectory in the plane λ-z result-
ing from a rotation around z by the angle ψ obtained
from the analytical expression (eq. (3)): each 3D B-J
trajectory collapses onto a closed orbit in the z-λ plane
with a shape depending on the initial conditions of the
trajectory and on the parameters A and β. Similar results
are observed for the experimental trajectories of type iii)
and iv) shown together with corresponding numerical pre-
dictions in figs. 5(b) and (c). For all these cases the drift
angle ψ and the closed orbits are clearly visible. Note
importantly, that the dependence of the drift angle ψ on
initial conditions z0, θ0 and φ0 may lead to important con-
sequences for the macroscopic transport properties. For
example, our calculations show that the direction of the
drift is explicitly dependent on the sign of the angle φ0,
which might be selected during the phase of detachment
from solid boundaries through non-trivial interaction pro-
cesses between bacteria and the wall [29,37–39]. Any bi-
ased distribution of initial orientations stemming from the
boundary conditions will contribute to a net bacterial drift
which could add up to the rheotactic contribution due to
chirality as proposed by Marcos et al. [28].

Phase portraits. The derivation of the phase portraits
has previously been performed by Zöttl and Stark [27].
Here we chose a different angle parametrization (fig. 3)
more suited to highlight the geometrical features we ex-
perimentally observe and thus rederive these results. We
first calculate the phase portrait z(θ). The ratio between
ż and θ̇ (eqs. (1) and (2)) yields dz

dθ = 2A sin(θ)
[β cos(2θ)−1](1−2z) ,

and can be integrated to obtain the relation:

z± =
1 ±

√
1 + 4B(cos θ)

2
, (4)

B(cos θ) = −z0(1 − z0)

+
A

2aβ
ln

[
(a + cos θ)(a − cos θ0)
(a − cos θ)(a + cos θ0)

]
, (5)

where a =
√

β+1
2β . The solutions z+ and z− correspond

respectively to sections of trajectories in the upper half
(0.5 < z < 1) or in the lower half (0 < z < 0.5) of the
channel. We then evaluate the phase portrait φ(θ). By
dividing φ̇ by θ̇ (eqs. (1) and (2)) one obtains sin θ dφ

dθ =
(β−1) cos(φ) cos(θ)
sin φ[β cos(2θ)−1] , yielding after integration:

∣∣∣ cos φ

cos φ0

∣∣∣ =
∣∣∣ tan θ0

tan θ

∣∣∣
√

1 + r2 tan2 θ

1 + r2 tan2 θ0
. (6)

Figure 6(a) shows good agreement of an experimental tra-
jectory and the numerical prediction represented in the
phase portraits. In addition, from the phase portraits dis-
played in figs. 6(a)–(c), we can rationalize the prominence
of trajectories staying close to a plane φ = φc as long
as the angle θ is not close to 0 or π (i.e., sin θ going to
zero). Then, in this last case, the model predicts a shift
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Fig. 6: Phase portraits. The phase lines in green are obtained
using eqs. (4) and (6), blue line: experimental data, red and
black lines are, respectively, numerical simulations without and
with rotational noise projected into the phase space. (a) Phase
portraits (A = 0.059 and β = 0.90). (b) and (c): phase por-
traits (A = 0.0625 and β = 0.97). The trajectories in black
show two different realizations of a numerical trajectory with
noise (Dr = 1/47 s−1) simulated using the same initial condi-
tions and parameters as for the red trajectory without noise.
In panel (b) simulations with and without noise remain very
close, whereas in panel (c) an important difference is observed.

from the initial plane to the mirror plane (see fig. 3). As
already noticed this is indeed a robust feature observed
experimentally for many trajectories.

Influence of orientational noise. – For all tra-
jectories observed experimentally, the features revealed
by the active 3D B-J model have been recovered semi-
quantitatively. However, even for the smooth swimmer
strain used here, a quantitative agreement between simu-
lation and experiments is only local in time. Indeed, after
a relatively short observation period experimental trajec-
tories deviate systematically from the numerical predic-
tions, even for bacterial trajectories that remain far from
the channel walls. We attribute this deviation to the pres-
ence of orientational noise in the experiment. Such erratic
changes in bacteria orientation can be due to several rea-
sons such as a mechanical bending of the flagellar bundle
under shear [40], remnant tumbling processes or thermal
fluctuations. By the nature of the equations of motion (1)
and (2), any variation in the orientation produces cumu-
lative large deviations in the positions, hence limiting the
possibility to obtain global agreement on the trajectories.

To illustrate the influence of noise we display in fig. 6
the θ-z and θ-φ phase spaces (green lines), parametrized
by A and β corresponding to typical experimental realiza-
tions. To the B-J trajectories, we added an orientational

noise term of amplitude Dr = 1/47s−1 (in black) [35] cor-
responding to the rotational diffusion of an ellipsoid of size
l = 8μm and width e = 1μm (equations given in the SM).
Figures 6(b) and (c) show the same phase portrait includ-
ing a chosen numerical trajectory without noise (in red).
Two different realizations with noise are shown in figs. 6(b)
and (c), respectively, demonstrating that the presence of
Brownian rotational noise can lead to very different tra-
jectories for identical initial conditions.

Discussion and conclusion. – We have shown that
the active B-J model reproduces semi-quantitatively the
observed experimental trajectories of non-tumbling E. coli
bacteria swimming in a Poiseuille flow. In particular, we
have proven experimentally the existence of families of
cycloid-like swinging and shear tumbling trajectories as
predicted by Zöttl and Stark [27]. Therefore, in spite of
the geometrical complexity of E. coli bacteria, the core of
the Bretherton model associating a swimming bacterium
with an effective ellipsoid is validated experimentally.

We have shown the propensity to swim in planes of
nearly constant angle φ = φc along the flow and to re-
peatedly switch between φ = φc and its mirror planes
φ = 2π − φc, a robust feature recovered experimentally.
We have established that this feature is associated with
the long aspect ratio of the bacteria (Bretherton parame-
ter β → 1). We have shown that cycloid-like trajectories
display a drift angle with the flow direction and we have
proven that after a rotation around the vertical axis, these
oscillating B-J trajectories do collapse onto closed orbits.
These properties are also recovered experimentally and we
have provided an analytical expression of this drift angle
which will be crucial in the dispersion mechanism along
the direction perpendicular to the flow. The drift angle
strongly depends on the initial conditions and a bias in
the initial orientation as for example induced by interac-
tions with surfaces might lead to bacteria drift into specific
directions.

Crucial questions remain concerning the reorientation of
the swimming angles due to rotational noise, which con-
tributes to the hydrodynamic dispersion process (in the
real x-y-z space). Here we have shown that the random-
ization process observed in the phase space is consistent,
at least in magnitude, with a rotational Brownian mo-
tion, for an effective ellipsoid. It is, however, possible that
other sources of randomization come into play such as the
bundle flexibility [41] partial debundling due to shear, wig-
gling effects [42] or reorientation due to the chirality of the
bacteria flagella [28].
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