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Abstract:   

Achieving the optimal control of cooling towers is critical to the energy-efficient operation of current or 

legacy chiller plants. Although many promising control methods have been proposed, limitations in their 

applications exist for legacy chiller plants. For example, some methods require the change of the plant’s 

overall control structure, which can be difficult to legacy chiller plants; some methods are too complicated 

and computationally intensive to implement in old building control systems. To address the above issues, 

we develop an operational support system. This system employs a model predictive control scheme to 

optimize the condenser water set point and can be applied in chiller plants without changes in the control 

structure. To further facilitate the implementation, we propose to increase the optimization accuracy by 

selecting a better starting point. The results from a case study with a real legacy chiller plant in Washington 

D.C. show that the proposed operational support system can achieve up to around 9.67% annual energy 

consumption savings for chillers and cooling towers. The results also show the proposed starting point 

selection method can achieve a better accuracy and a faster computational speed than commonly used 

methods. In addition, we find that we can select a lower optimization frequency for the studied case since 

the impact of the optimization frequency on the energy savings is not significant while a lower optimization 

frequency does reduce the computational demand to a great extent.  
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Nomenclature 

𝑡 Time 

𝐸|𝑡0

𝑡0+Δ𝑡
 Energy consumption during the optimization period [𝑡0, 𝑡0 + ∆𝑡) 

𝑃 Power 

𝑇 Temperature 

𝑄̇ Cooling load 

𝑆 State vector  

𝑃𝐿𝑅 Part load ratio 

𝐶𝑂𝑃 Coefficient of performance 

𝜀 Effectiveness 

𝑐 Constant coefficient 

𝑦 Cooling tower fan speed ratio 

 

Superscript 

𝑃 Predicted 

∗ With error 

 

Subscript 

𝑐𝑤 Condenser water 

𝑐ℎ𝑤 Chilled water 

𝑠𝑒𝑡 Set point 

𝑤𝑏 Outdoor wet bulb temperature 

𝐿 Low limit 

𝐻 High limit 

𝑙𝑜𝑤 The lowest possible value 

ℎ𝑖𝑔 The highest possible value 

𝑡𝑤 Cooling tower 
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𝑐ℎ Chiller 

𝑒𝑛𝑡 Entering the chiller 

𝑙𝑒𝑎 Leaving the chiller 

𝑠𝑡𝑎 Starting point 

𝑎𝑝𝑝 Approach 

𝑛𝑜𝑚 Nominal 

𝑒𝑣𝑎 Evaporator 

𝑐𝑜𝑛 Condenser 

𝑠𝑡𝑎𝑒𝑟𝑟 Static error 
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1. Introduction 

Chiller plants are widely used to provide cooling to buildings [1]. As a result, about 5.17×1011 MJ annual 

energy consumption in the commercial buildings is attributed to chillers alone, which are the key 

components of chiller plants [1]. Including other components, such as cooling towers and pumps, the total 

energy consumption by chiller plants is even higher. Thus, it is necessary to enhance the energy efficiency 

of chiller plants. 

 

Depending on how chillers reject the waste heat, chiller plants can be categorized as water-cooled and air-

cooled. Water-cooled chiller plants with cooling towers are commonly used for large buildings. A typical 

water-cooled chiller plant consists of two water loops: a chilled water loop and a condenser water loop. The 

chilled water loop transfers the cooling energy generated by the chiller to the demand side; the condenser 

water loop rejects the waste heat from the chiller to the ambient environment through the water evaporation 

occurs in cooling towers [2].   

 

Water-cooled chiller plants are typically controlled by a two-level control structure. The low-level control 

(local controller) is enabled by a feedback control system. For instance, the temperature of the condenser 

water leaving the cooling towers is typically controlled by adjusting the speed of the cooling tower fans to 

meet a predefined set point, which is referred as condenser water set point. The upper-level control 

(supervisor controller) is used to specify set points for the local controller and other time-dependent modes 

of operation [2]. Conventionally, set points are fixed at the nominal values. 

 

One commonly used approach to improve energy efficiency of chiller plants is to optimize the control of 

the cooling towers: one can reduce chiller energy consumption by increasing cooling tower fan speeds so 

that the temperature of the condenser water entering the chillers is reduced. However, higher fan speeds 

mean that cooling towers will use more energy. Thus, the goal is to minimize the total energy consumption 

of cooling towers and chillers by adjusting the fan speeds of cooling towers. 

 

Due to the nonlinear nature of chiller plant energy use, identifying the optimal cooling tower fan speed is 

challenging. For example, the energy performance curves of chillers and cooling towers are usually 

nonlinear and sometimes non-convex, which means the commonly used system analysis tools, such as 

linear optimization methods, may not be suitable for this problem. In addition, according to the ASHRAE 

Handbook [2], the optimal fan speeds of cooling towers may be affected by both the cooling load and 

weather conditions. Therefore, finding optimal cooling tower fan speed is also a multiple-input problem.  
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The current methods for optimizing cooling tower fan speeds [3-13] can be categorized into two groups. In 

the first group, researchers [3, 4] proposed to replace the two-level control structure by directly controlling 

the fan speeds according to cooling load conditions. For example, Braun, Klein, et al. [3] proposed a 

systematic method to control speeds of the variable-speed cooling tower fans: all the cooling tower fans 

should be operated with the same speed and a linear equation was proposed to determine the optimal fan 

speed according to the cooling load. This method is easy to implement and can make cooling tower control 

more stable. 

 

In the second group, researchers [5-13] proposed to reset the condenser water set point according to the 

weather and/or cooling load conditions. Some researchers [5-8] have proposed near-optimal solutions in 

order to reduce computational runtimes and simplify the implementation. In the near-optimal solution, 

regression models are used to describe the relationship between the optimal condenser water set point and 

the wet bulb temperature, and/or cooling load conditions. The regression models are usually a linear 

regression model [5] [7] or a polynomial regression model [6] to facilitate the implementation in a real 

controller. Although simple, those regression models may lead to significant deviation from the real optimal 

results [2, 10]. Other researchers [9-12] developed model-based optimization methods to increase the 

optimization accuracy. For example, Lu, Cai, et al. [9] proposed to model the studied chiller plant with an 

empirical model and optimize the system by using a genetic algorithm to find the optimal condenser water 

set point. They found that they could save approximately 10% of the energy consumption for the studied 

condenser water loop during high load periods compared to the baseline in which cooling tower fans and 

condenser water pumps were always at full speeds.  

 

However, above methods are not often suitable for legacy chiller plants. The methods in the first group may 

not be applied in legacy chiller plants due to the difficulties in changing the control structure of the legacy 

chiller plants. The control systems of the legacy chiller plants are usually enclosed and any modification 

can be difficult and uneconomical. For the methods in the second group, the most promising model-based 

optimization methods are usually highly complicated and computationally intensive. For legacy chiller 

plants, the existing control systems are commonly simple programmable logic controllers with limited 

computational resources available, which makes the implementation of model-based optimization methods 

very challenging.  

 

Another operational constraint in legacy systems is that changing the condenser water set point cannot be 

performed very often since resetting may have to be done manually by the building operators. Therefore, 

identifying an appropriate resetting frequency for changing the condenser water set point is critical. On one 
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side, a low resetting frequency can reduce efforts by the building operators. On the other side, a low 

frequency may reduce the energy savings due to the failure in capitalizing on the system dynamics; in 

addition, a lower optimization frequency leads to a longer prediction horizon for model inputs. The 

prediction accuracy will be likely decreased with a longer prediction horizon [14], which means more 

uncertainties will be introduced into the optimization. Thus, it is important to quantitatively evaluate the 

impact of the optimization frequency on the energy consumption by chiller plants. 

 

This study attempts to develop an operational support system to optimize cooling tower operation for legacy 

chiller plants. Our system uses the predicted cooling load and wet bulb temperature as inputs for a model 

predictive scheme to search the optimal condenser water set points for a future period. The operators can 

then manually change the set points in the chiller control system, which alleviates the difficulty in the 

implementation for legacy building systems as it does not require the deployment of the algorithms in 

existing legacy controllers. To improve the optimization accuracy and increase the optimization speed, we 

also proposed an approach temperature based method for the selection of optimal search starting point. The 

proposed method was then assessed using a case study on a legacy chiller plant located in Washington D.C.  

In this case study, the energy saving is estimated based on offline simulations. To quantify the impact of 

set points changing frequency on the energy savings, we also evaluated the energy savings with different 

optimization frequencies in the case study.  

 

Compared to the existing literature, this study makes the following contributions: first, we proposed an 

operational support system to optimize the cooling tower operation for legacy chiller plants, which is easier 

to implement than existing methods. Second, an approach temperature based method for selecting the 

starting point was developed to improve the accuracy and increase the speed of the model-based condenser 

water set point optimization. The approach temperature based method demonstrated a better performance 

compared to three commonly used methods. Third, we presented a systematic evaluation for the impact of 

the optimization frequency on the energy savings by the condenser water set point optimization. The 

evaluation can help operators determine the optimal resetting frequency.  

 

2. Model Predictive Control for Optimizing the Condenser Water Set Point 

2.1 Optimization Problem Definition 

For the condenser water set point optimization, we consider a water-cooled chiller plant with multiple 

chillers and multiple cooling towers. The primary chilled water pumps and condenser water pumps are 

constant speed pumps.  For each cooling tower, there is a variable speed fan controlled by one condenser 

water set point. We assume that all the cooling towers are controlled by the same condenser water set point 
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and there is no other independent variable in the optimization. Since the change of the condenser water set 

point doesn’t affect the operation of pumps, the optimization problem can be defined as  

argmin

𝑇𝑐𝑤,𝑠𝑒𝑡(𝑡0)
(𝐸𝑡𝑜𝑡|𝑡0

𝑡0+Δ𝑡
) = min (∫ (𝑃𝑐ℎ(𝑡) +

𝑡0+∆𝑡

𝑡0

𝑃𝑡𝑤(𝑡))𝑑𝑡)  

 

for 𝑡 ∈ [𝑡0, 𝑡0 + ∆𝑡) 

(1) 

𝑃𝑐ℎ(𝑡) = 𝑓(𝑇𝑐𝑤,𝑒𝑛𝑡(𝑡), 𝑄̇𝑃(𝑡), 𝑆𝑐ℎ(𝑡)) (2) 

𝑃𝑡𝑤(𝑡) = 𝑓(𝑇𝑤𝑏
𝑃 (𝑡), 𝑇𝑐𝑤,𝑠𝑒𝑡(𝑡0), 𝑇𝑐𝑤,𝑙𝑒𝑎(𝑡), 𝑆𝑡𝑤(𝑡)) (3) 

s.t.                                             𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 ≤ 𝑇𝑐𝑤,𝑠𝑒𝑡(𝑡0) ≤ 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻, (4) 

𝑇𝑐𝑤,𝑒𝑛𝑡(𝑡) = 𝑓(𝑇𝑤𝑏
𝑃 (𝑡), 𝑇𝑐𝑤,𝑠𝑒𝑡(𝑡0), 𝑇𝑐𝑤,𝑙𝑒𝑎(𝑡), 𝑆𝑡𝑤), (5) 

𝑇𝑐𝑤,𝑙𝑒𝑎(𝑡) = 𝑓(𝑄̇𝑃(𝑡), 𝑃𝑐ℎ(𝑡), 𝑇𝑐𝑤,𝑒𝑛𝑡(𝑡), 𝑆𝑐ℎ), (6) 

where 𝐸𝑡𝑜𝑡|𝑡0

𝑡0+Δ𝑡
 is the total energy consumption of the chillers and cooling towers during the optimization 

period [𝑡0, 𝑡0 + ∆𝑡), 𝑃𝑐ℎ is the power of the chillers while 𝑃𝑡𝑤 is the power of the cooling towers,  𝑇𝑐𝑤,𝑠𝑒𝑡 

is the condenser water set point, 𝑄̇𝑃 is the predicted cooling load over [𝑡0, 𝑡0 + ∆𝑡), 𝑇𝑤𝑏
𝑃  is the predicted 

wet bulb temperature over [𝑡0, 𝑡0 + ∆𝑡), 𝑇𝑐𝑤,𝑒𝑛𝑡 and 𝑇𝑐𝑤,𝑙𝑒𝑎 are the temperature of the condenser water 

entering and leaving the chillers, respectively. 𝑆𝑐ℎ  and 𝑆𝑡𝑤  are the state vectors of the chillers and the 

cooling towers (e.g. equipment operating status, water temperature in chiller condenser and evaporator), 

respectively. 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿  and 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 are the low and high limits of the condenser water set point during 

[𝑡0, 𝑡0 + ∆𝑡). Using the evaporative cooling, the cooling tower cannot cool the condenser water to a 

temperature lower than the outdoor web bulb temperature, 𝑇𝑤𝑏. Thus, the actual 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 can be determined 

by 

𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚{𝑇𝑖 ∈ {𝑇1, … , 𝑇𝑛} | 𝑇𝑖 ≥ 𝑇𝑤𝑏,𝐿
𝑃 }, (7) 

where {𝑇1, … , 𝑇𝑛} is the set of all the possible values for the condenser water set point, 𝑇𝑤𝑏,𝐿
𝑃  is the lowest 

𝑇𝑤𝑏
𝑃  during [𝑡0, 𝑡0 + ∆𝑡). The 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 is set as 

𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 {𝑇1, … , 𝑇𝑛} . (8) 

In addition, 𝑄̇𝑃 can be estimated using the load prediction model shown in [15] and 𝑇𝑤𝑏
𝑃 (𝑡) can be obtained 

from the weather forecast service.  

 

2.2 Optimization Framework for Chiller Plants 

To implement the optimization described in the section 2.1, we developed a framework for the chiller plant 

controls optimization. The core of the framework is a system model of the studied chiller plant and an 

optimization engine. The plant model can be re-initialized during the runtime for continuous optimization. 
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In addition, Python scripts are developed to automate the pre-processing, optimization and post-processing 

processes. 

 

Figure 1 shows the workflow of the developed framework for the condenser water set point optimization. 

For the optimization period starting from 𝑡0, the 𝑄̇𝑃(𝑡), 𝑇𝑤𝑏
𝑃(𝑡) and 𝑆(𝑡0) are used as input variables to 

perform the optimization, then the generated optimum 𝑇𝑐𝑤,𝑠𝑒𝑡(𝑡0)  would be used to obtain 𝑆(𝑡0 + ∆𝑡) 

which would be used in the optimization for the next optimization period starting from 𝑡0 + ∆𝑡.  

 
Figure 1 The workflow of the condenser water set point optimization 

 

3. Starting Point Selection for the Condenser Water Set Point Optimization 

In general, a good search starting point can significantly increase the success rate of finding the global 

optimum and reduce the searching time. For the condenser water set point optimization, finding the global 

minimum can be a critical issue since many local minima exist. The optimization algorithm can potentially 

be trapped in local minima if the starting point is not appropriately selected. In the following sessions, we 

will first introduce the local minima problem in the condenser water set point optimization. Then we will 

discuss benefits and difficulties of three typical methods for selecting the optimization starting point. Finally, 

we propose a new method, which is simple and effective.  

 

3.1. Local Minima Problem 

As shown in Figure 2, it is possible that 𝐸|𝑡0

𝑡0+𝛥𝑡
 is constant if  𝑇𝑐𝑤,𝑠𝑒𝑡 is within a certain range (we name 

this range as “flat range”). When 𝑄̇ or 𝑇𝑤𝑏 is high, the flat range will occur at the lower end of  𝑇𝑐𝑤,𝑠𝑒𝑡 

(Figure 2a). In this case, 

 𝑇𝑐𝑤,𝑙𝑜𝑤 ≥  𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 , (9) 

where  𝑇𝑐𝑤,𝑙𝑜𝑤 is the lowest possible temperature of the condenser water leaving the cooling tower when  

the cooling tower fans are running at full speeds. Thus, when 𝑇𝑐𝑤,𝑠𝑒𝑡 <  𝑇𝑐𝑤,𝑙𝑜𝑤, we always have  
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𝐸𝑡𝑤|𝑡0

𝑡0+𝛥𝑡
= 𝑐𝑜𝑛𝑡𝑎𝑛𝑡, 𝑇𝑐𝑤,𝑠𝑒𝑡 ∈ [𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿, 𝑇𝑐𝑤,𝑙𝑜𝑤], (10) 

𝑇𝑐𝑤,𝑒𝑛𝑡 =  𝑇𝑐𝑤,𝑙𝑜𝑤, 𝑇𝑐𝑤,𝑠𝑒𝑡 ∈ [𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 , 𝑇𝑐𝑤,𝑙𝑜𝑤], (11) 

where 𝐸𝑡𝑤|𝑡0

𝑡0+𝛥𝑡
 is the energy used by the cooling towers. With a constant 𝑇𝑐𝑤,𝑒𝑛𝑡 , the chiller energy 

consumption, 𝐸𝑐ℎ|𝑡0

𝑡0+𝛥𝑡
, will also remain unchanged. Thus, we will also have  

𝐸𝑡𝑜𝑡|𝑡0

𝑡0+Δ𝑡
= 𝑐𝑜𝑛𝑡𝑎𝑛𝑡, 𝑇𝑐𝑤,𝑠𝑒𝑡 ∈ [𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 , 𝑇𝑐𝑤,𝑙𝑜𝑤]. (12) 

 

When 𝑄̇  or 𝑇𝑤𝑏  is low, the flat range may occur at the higher end of  𝑇𝑐𝑤,𝑠𝑒𝑡  (Figure 2b). Under this 

condition, we will have 

 𝑇𝑐𝑤,ℎ𝑖𝑔 ≤  𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 , (13) 

where  𝑇𝑐𝑤,ℎ𝑖𝑔 is the highest possible temperature of the condenser water leaving the cooling tower when 

the cooling tower fans are off and only natural cooling happens. Thus, the cooling tower energy is zero: 

𝐸𝑡𝑤|𝑡0

𝑡0+𝛥𝑡
= 0, 𝑇𝑐𝑤,𝑠𝑒𝑡 ∈ [𝑇𝑐𝑤,ℎ𝑖𝑔, 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻]. (14) 

And we will also have  

𝑇𝑐𝑤,𝑒𝑛𝑡 = 𝑇𝑐𝑤,ℎ𝑖𝑔, and 𝐸𝑐ℎ|𝑡0

𝑡0+𝛥𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑇𝑐𝑤,𝑠𝑒𝑡 ∈ [𝑇𝑐𝑤,ℎ𝑖𝑔, 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻]. (15) 

As a result, the total energy consumption of chillers and cooling towers is also constant: 

𝐸𝑡𝑜𝑡|𝑡0

𝑡0+Δ𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑇𝑐𝑤,𝑠𝑒𝑡 ∈ [𝑇𝑐𝑤,ℎ𝑖𝑔, 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻] (16) 

 

 

(a) 

 

(b) 

Figure 2 Flat ranges in the condenser water set point optimization 

 

In both scenarios, the optimization algorithm will obtain a minimal solution in the flat range since it cannot 

detect any changes of 𝐸𝑡𝑜𝑡|𝑡0

𝑡0+𝛥𝑡
 for any 𝑇𝑐𝑤,𝑠𝑒𝑡  within the flat range. However, the obtained minimal 

solution is only valid for the flat range (local minimum).  
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3.2. Current Methods for Selecting Starting Point 

To mitigate the local minima problem in the condenser water set point optimization, it is critical to start the 

search outside the flat range. Unfortunately, generic starting point selection methods, such as the middle 

point method, the multiple starting point method, and the previous value method may not be well-suited for 

avoiding the flat range problem.  

The middle point method uses the middle point between the low bound and high bound of the independent 

variable as the starting point. Because it is the simplest method to reduce the distance of the starting point 

and the global minimum, the middle point method is widely used in optimization problems when only one 

global minimum is believed to exist [16, 17]. However, for the optimization problem with multiple local 

minima, the middle point method may lead to a local minimum if the local minimum is near the middle 

point.  

 

As an improvement of middle point method, a multiple starting point method was proposed [18]. In this 

method, multiple starting points are generated randomly from a uniform distribution between the low and 

high bounds for the independent variable to increase the possibility that starting points are close to the 

global minimum. However, it still does not guarantee the global minimum and may increase the searching 

time with multiple starting points [19].  

 

Alternatively, the previous value method [20] uses the optimal value resulted from the previous search as 

the starting points of the present search. The previous value method is based on the assumption that the 

optimal results for two adjacent optimization periods are likely close if the system states and inputs are 

similar. However, it may not work properly if the system states and inputs of two optimization periods are 

significantly different. 

 

Specifically for the condenser water set point optimization, we can also use the highest possible set point 

as the starting point, 𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎:  

𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 =  𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻. (17) 

This method can be called as “high point” method. It can mitigate the flat range problem at the low end 

(Figure 2a) but not the one at the high end (Figure 2b). 

 

3.3. Approach Temperature Method 
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To address the limitation of the current starting point selection methods for the condenser water set point 

optimization, we propose an approach temperature based method by considering the physics of the chiller 

plant. To avoid the flat range, 𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 should satisfy  

𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 ∈ [𝑇𝑐𝑤,𝑙𝑜𝑤, 𝑇𝑐𝑤,ℎ𝑖𝑔]. (18) 

 

The challenge is how to predict 𝑇𝑐𝑤,𝑙𝑜𝑤  and 𝑇𝑐𝑤,ℎ𝑖𝑔. Although some sophisticated cooling tower 

performance models [21, 22]  can be used to predict 𝑇𝑐𝑤,𝑙𝑜𝑤 and 𝑇𝑐𝑤,ℎ𝑖𝑔, they are too complicated for the 

starting point selection. In this study, we propose to estimate the 𝑇𝑐𝑤,𝑙𝑜𝑤 based on the nominal approach 

temperature Δ𝑇𝑎𝑝𝑝,𝑛𝑜𝑚, which is the difference between the temperature of condenser water leaving the 

cooling tower and the wet bulb temperature at the nominal condition. The predicted 𝑇𝑐𝑤,𝑙𝑜𝑤 will be: 

𝑇𝑐𝑤,𝑙𝑜𝑤
𝑃  = {

𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿    𝑇𝑤𝑏 < 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐿 − Δ𝑇𝑎𝑝𝑝,𝑛𝑜𝑚

𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 𝑇𝑤𝑏 > 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 − Δ𝑇𝑎𝑝𝑝,𝑛𝑜𝑚

𝑟𝑜𝑢𝑛𝑑 (𝑇𝑤𝑏  + Δ𝑇𝑎𝑝𝑝,𝑛𝑜𝑚) 𝑂𝑡ℎ𝑒𝑟𝑠
  , (19) 

where 𝑟𝑜𝑢𝑛𝑑() is the function shown as follows: 

𝑟𝑜𝑢𝑛𝑑(𝑇) = 𝑚𝑎𝑥 {𝑇𝑖 ∈ {𝑇1, … , 𝑇𝑛} | 𝑇𝑖 ≤ 𝑇)}, (20) 

where {𝑇1, … , 𝑇𝑛} is the set of all the possible values for 𝑇𝑐𝑤,𝑠𝑒𝑡 defined in equation (7). We then set: 

𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 = 𝑇𝑐𝑤,𝑙𝑜𝑤
𝑃 , (21) 

It is worth mentioning that under certain conditions [23], it is possible that 

Δ𝑇𝑎𝑝𝑝 > Δ𝑇𝑎𝑝𝑝,𝑛𝑜𝑚, (22) 

where Δ𝑇𝑎𝑝𝑝 is the actual approach temperature. This will lead to 

𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 = 𝑇𝑐𝑤,𝑙𝑜𝑤
𝑃 < 𝑇𝑐𝑤,𝑙𝑜𝑤. (23) 

In this case, the condition defined in (14) is no longer met and 𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 will be located in the flat range.  

 

4. Case Study 

To evaluate the performances of the proposed system and starting point selection methods, as well as to 

identify how optimization frequency affects the condenser water set point optimization, we implemented 

the proposed model predictive control in a real chiller plant. Then we performed an offline optimization 

using the historical cooling load and wet bulb temperature data as the inputs. The results are also reported 

in this section. 

 

4.1 Case Description 

The studied chiller plant is located in Washington D.C., U.S.A. The chiller plant has a primary-secondary 

chilled water distribution loop and our optimization focused on the primary loop. As shown in Figure 3, the 



13 

 

chiller plant consists of three identical chillers, three identical cooling towers, three identical primary chilled 

water pumps, and three identical condenser water pumps. The chiller capacity is 970 ton. Each chiller has 

one dedicated chilled water pump, one dedicated condenser water pump, and one dedicated cooling tower. 

The temperature of chilled water leaving the chiller, 𝑇𝑐ℎ𝑤,𝑙𝑒𝑎, is set as 3.89oC. The campus we studied had 

a legacy HVAC system and the AHU units could only handle chiller water at around 3.89oC. The cooling 

tower has a nominal fan power as 37 kW, the nominal wet bulb temperature, 𝑇𝑤𝑏,𝑛𝑜𝑚, is 25.56oC 

and ∆𝑇𝑎𝑝𝑝,𝑛𝑜𝑚 is 3.89 K. A local controller is used to modulate the speeds of the cooling tower fans to 

maintain the temperature of the condenser water leaving the cooling towers as 29.44oC. In the condenser 

water loop, a three-way valve is employed to modulate the condenser flow rates through the cooling towers 

so that 𝑇𝑐𝑤,𝑒𝑛𝑡 is not less than 15.00oC, which is the lowest temperature can be accepted by the chillers.   

 

 

Figure 3 The schmatic of the studied chiller plant (the primary loop) 

 

A supervisor controller is used to control the chiller operation status according to the measured cooling 

load. As described in Figure 4, there are four operating states for the chiller plant. For instance, “One On” 

means there is only one chiller in operation. The three chillers can be turned on or off sequentially. A chiller 

should not be turned on/off unless the measured cooling load is larger/smaller than a certain critical point 

plus/minus a dead band, such as 50 ton. The critical points are defined as 90.00% of the sum of the operating 
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chillers’ nominal cooling capacity. Besides the dead-band, a waiting period of 900 s is also applied to avoid 

chiller short cyclings.  

 

Figure 4 The state graph for the supervisor controller 

 

4.2 Plant Models 

In this study, we used Modelica to model the plant performance. Examples of building related modeling 

with Modelica include the modeling of building envelopes, a data center cooling system, and a chiller plant 

[12, 24-26].  

 

We modeled the chiller plant using component models from Modelica Buildings library [24] and the state 

graph described in Figure 4 with the Modelica_StateGraph2 library [27]. Modelica models were created 

and compiled with a commercial Modelica environment Dymola [28]. A hierarchical model structure has 

been applied and Figure 5 shows the top-level model, which represents the schematic in Figure 3.  The 

subsystems for Chillers, Cooling Towers with Bypass and so on are packaged as single component models 

in the top-level model. Since our study focused on the primary loop, we prescribed the cooling load at the 

secondary loop using a Cooling Load model. Different than the system schematic, the top-level model also 

includes the control system, such as the Supervisor Controller model. The solid lines represent the pipes 

and the dashed lines are the paths for control signals and other inputs for the simulation, such as weather 

data and cooling load data.  
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Figure 5 Diagram of the top-level Modelica model for the studied chiller plant 

 

Figure 6 Diagram of the subsystem model for the Chillers 

 

Figure 6 shows the subsystem model for Chillers. The three chillers are connected in parallel and each 

chiller can be started independently. The inputs for this subsystem include the control signal (ON/OFF) for 

each chiller, the chilled water set point and the temperature of the chilled and condenser water entering the 

chillers. The output is the power of each chiller. A Chillers.Carnot model in the Buildings library is used 

to calculate the power of each chiller: 

𝑃𝑐ℎ = 𝑃𝑐ℎ,𝑛𝑜𝑚𝑃𝐿𝑅𝐶𝑂𝑃𝑛𝑜𝑚/(
𝑇𝑒𝑣𝑎

𝑇𝑐𝑜𝑛−𝑇𝑒𝑣𝑎
𝜀𝑐𝑎𝑟𝑛𝑜𝑡𝜀𝑃𝐿𝑅(𝑃𝐿𝑅)), (24) 
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where 𝑃𝑐ℎ,𝑛𝑜𝑚 is the nominal power of the chiller, 𝑃𝐿𝑅 is the partial load ratio, 𝐶𝑂𝑃𝑛𝑜𝑚 is the chiller’s 

coefficient of performance at the nominal condition, 𝑇𝑒𝑣𝑎 and 𝑇𝑐𝑜𝑛 are the temperatures in the evaporator 

and condenser sides of the chiller, respectively. In this study, 𝑇𝑒𝑣𝑎 and 𝑇𝑐𝑜𝑛 were assumed to be equal to 

𝑇𝑐ℎ𝑤,𝑙𝑒𝑎 and 𝑇𝑐𝑤,𝑒𝑛𝑡, respectively. The 𝜀𝑐𝑎𝑟𝑛𝑜𝑡 is the Carnot effectiveness (assumed to be constant) and 

𝜀𝑃𝐿𝑅 is the chiller’s operation effectiveness at partial loads, which is a function of PLR:  

𝜀𝑃𝐿𝑅(𝑃𝐿𝑅) = 𝑐1 + 𝑐2𝑃𝐿𝑅 + 𝑐3𝑃𝐿𝑅2 + (1 − 𝑐1 − 𝑐2 − 𝑐3)𝑃𝐿𝑅3, (25) 

where 𝑐1, 𝑐2, 𝑐3 are constant coefficients. In order to mimic the internal capacity control of each chiller, a 

PI controller was used to modulate PLR for each chiller to maintain 𝑇𝑐ℎ𝑤,𝑙𝑒𝑎 as 3.89oC. 

 

Figure 7 Diagram of the subsystem model for the Cooling Towers with Bypass 

 

Figure 7 shows the diagram of the Cooling Towers with Bypass subsystem model. The model inputs include 

the control signal (ON/OFF) for each cooling tower, the temperature of the condenser water entering the 

cooling towers, the condenser water set point, and 𝑇𝑤𝑏. The outputs are the power of each cooling tower. 

The bypass valve and the associated control are also included in this model. The cooling tower is modeled 

with the model CoolingTowers.YorkCalc in the Buildings library. The model calculates the approach 

temperature using a purely-empirical YorkCalc correlation [29]. The fan power 𝑃𝑡𝑤 is computed as  

𝑃𝑡𝑤 = 𝑃𝑡𝑤,𝑛𝑜𝑚𝑦3. (26) 

where  𝑦 is the fan speed ratio and 𝑃𝑡𝑤,𝑛𝑜𝑚 is the nominal fan power. A PI controller is used to adjust 𝑦 

according to 𝑇𝑐𝑤,𝑠𝑒𝑡. 
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The subsystem model for the Supervisor Controller is shown in Figure 8. The core of the Supervisor 

Controller is a state graph model that is in the middle of the model diagram. It consists of state (oval icon) 

and transition (bar icon) modules. The state modules were used to represent the four states described in 

Figure 4. The transition module determines when to switch one state to another state. Each transition module 

has one preceding state and one succeeding state. When the conditions are met, the transition fires. 

 

Figure 8 Diagram of the subsystem model for the Supervisor Controller 

 

We calibrated chiller models using one week measured data. In the calibration, we used the temperatures 

of the condenser and chilled water entering the chillers as input variables. The goal was to minimize the 

difference between the measured and simulated power of chiller by tuning the coefficients of the chiller 

performance curve (𝑐1, 𝑐2, 𝑐3 , 𝑐4 in equation (25)), the nominal condenser water temperature, and the 

chilled water temperature. Figure 9 shows the calibration result of chiller #1 for one week in 2012. The 

calibrated model can predict a close result for the temperature of the condenser water leaving the chiller, 

𝑇𝑐𝑤,𝑙𝑒𝑎, and the chiller power since the relative errors of most of the predictions are less than 5%. 
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Figure 9 Calibration of the chiller model (chiller #1) 

 

4.3. Optimization Settings 

In this study, we used the GenOpt [30] optimization engine and employed the Hooke Jeeves algorithm. 

Polak [31]). The Hooke Jeeves method was selected because it was very simple to implement, and it did 

not require information regarding derivatives of the optimization objective functions. Important examples 

of such implementations include [32],[33], and [34]. The {𝑇1, … , 𝑇𝑛} defined in equation (7) was set to be 

[15.44, 29.44oC] with an interval of 1oC. We used the historic data for 𝑄̇ and 𝑇𝑤𝑏 as the input variables, 

which is equivalent to having a perfect prediction model. The perfect prediction model creates an ideal 

input to avoid uncertainties in optimization inputs while evaluating the optimization method. The 

optimizations were performed over a period of 1 year.  Figure 10 shows the annual hourly 𝑄̇ and 𝑇𝑤𝑏 in the 

year of 2012. The 𝑄̇ was obtained from on-site measurement and 𝑇𝑤𝑏 was from a nearby weather station 

[35]. Since both 𝑄̇ and 𝑇𝑤𝑏 were hourly data, they were linearly interpolated during one hour to provide the 

inputs for the dynamic simulation. 



19 

 

 

  (a) 

 

(b) 

Figure 10 Input data for the optimziation (a) cooling load (b)  wet bulb temperature 
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To evaluate the impact of the optimization frequency on the energy savings from the condenser water set 

point optimization, we performed optimizations with three different frequencies: once an hour (Hourly 

OPT), once a day (Daily OPT) and once a week (Weekly OPT) using historic data as perfect predictions of 

𝑄̇ and 𝑇𝑤𝑏. An exhaustive search method with a frequency as once an hour (Hourly ES) was used as the 

benchmark.  

 

The optimizations were performed using a Dell Precision T7600 Tower Workstation computer with a Four 

Core XEON processor (E5-2609, 2.4GHz, 10M, 6.4 GT/s). The operation system is Windows 7 Ultimate. 

 

4.4. Evaluation of Starting Point Selection Methods 

In this section, we evaluated the performances of four different starting point selection methods. The four 

methods are: approach temperature, middle point, previous value, and high point. All the four methods are 

implemented in Hourly OPT.   

 

Table 1 shows the accuracy of the optimization with four starting point selection methods compared with 

the Hourly ES. There are 8,760 searches performed for the hourly optimization over a year. None of the 

starting point selection methods could guarantee the global minimum for all searches. With a better starting 

point, the search using the approach temperature method could mitigate the local minima problem and had 

the lowest failure point ratio (the ratio of number of failure searches in finding global optimal to the total 

number of searches). This means the accuracy of the simple estimation on the approach temperature doesn’t 

significantly impact the searching of the optimal results in this study. The failure ratio of the middle point 

method and the high point method were about twice of the approach temperature method. The previous 

value method experienced the highest failure rate, which is more than three times compared to the approach 

temperature method. This means that the search with the previous value method is more likely trapped by 

local minima. However, it is surprising that the energy saving penalties for the failures were significantly 

smaller compared to the searching failure ratios.  
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Table 1 Comparison of the accuracy using different starting point selection methods  

 
Approach 

Temperature 
High Point 

Previous 

Value 
Middle Point 

Benchmark 

(Exhaustive 

Search) 

Number of 

Failure 

Searches 

315 814 1,080 715 N/A 

Failure 

Search Ratio 
3.59% 9.27% 12.30% 8.14% N/A 

Annual 

Energy 

Consumption 

[kWh] 

5,028,148 5,030,700 5,030,545 5,028,436 5,027,758 

Annual 

Energy 

Saving Ratio 

9.67% 9.63% 9.63% 9.67% 9.68% 

 

Table 2 compares the computational performances of four methods. Depending on the starting point 

selection methods, the number of simulations needed by the optimization arranges from 30,989 to 52,285 

which is significantly less than 113,658 simulations required by the exhaustive search. In terms of the 

computing time, the previous value method had the best performance and it reduced the number of 

simulations by around 72.73% and computing time by about 55.74% compared to the exhaustive search. 

The approach temperature method had similar performance as the previous value method. The high point 

method and the middle point method had lower reduction ratios for both the number of simulation (54.00%-

57.82%) and computing time (40.40% - 42.25%).  

Table 2 Comparison of the computational performance using different starting point selection methods 

 
Approach 

Temperature 
High Point 

Previous 

Value 
Middle Point 

Exhaustive 

Search 

Number of 

Simulation 
34,585 52,285 30,989 47,941 113,658 

Number of 

Simulation 

Reduction 

Ratio 

69.57% 54.00% 72.73% 57.82% N/A 

Computing 

Time [s] 
25,045 32,933 24,459 31,914 55,258 

Computing 

Time 

Reduction 

Ratio 

54.68% 40.40% 55.74% 42.25% N/A 
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It is worth mentioning that the average CPU time for each hourly optimization is around 2.86-6.31s, which 

is significantly less than the optimization period. Thus, we believe that the model and the optimization is 

fast enough to perform optimization more frequently. 

 

To get more insights on when and why each method failed to find the global minimum, we studied four 

different scenarios. The first scenario happened when 𝑄̇ or 𝑇𝑤𝑏 was low. In this scenario, the flat range was 

likely to occur at the high end. As shown in Figure 11 (a), the flat range was between 27.44oC and 29.44oC. 

Since the high point method selected 𝑇𝑐𝑤,𝑠𝑒𝑡,𝐻 as 29.44oC, it was trapped by the local minima within the 

flat range. Other methods selected a starting point outside the flat range and successfully found the global 

minimum.  

 

The second scenario occurred when 𝑄̇ was extremely low. This could happen in the winter that the chiller 

was still running to provide cooling for building internal zones, such as computer rooms, even 𝑇𝑤𝑏 is very 

low. The flat range extended to a very low temperature (Figure 11(b)) and both the middle point method 

and high point method failed to find the global minimum. 

 

The third scenario happened when 𝑇𝑤𝑏 < 𝑇𝑤𝑏,𝑛𝑜𝑚  and 𝑄̇  was relatively high. As mentioned earlier, 

equation (19) may underestimate 𝑇𝑐𝑤,𝑙𝑜𝑤. In that case, the approach temperature method will get stuck in 

the local minima. For instance, in Figure 11 (c), 𝑇𝑐𝑤,𝑠𝑒𝑡,𝑠𝑡𝑎 given by equation (19) was 24.44oC, which was 

still in the flat range of [21.44, 24.44oC]. Since the initial search step is 2.00oC, the optimization algorithm 

found that both 𝑇𝑐𝑤,𝑠𝑒𝑡  = 22.44oC and 26.44oC cause a higher energy consumption than 𝑇𝑐𝑤,𝑠𝑒𝑡  = 24.44oC, 

but missed the global minimum at 25.44oC. In this case, using a smaller initial search step, such as 1.00oC 

may avoid the problem. However, this is at the cost of longer searching time. 

 

The fourth scenario appeared when the difference between the optimal 𝑇𝑐𝑤,𝑠𝑒𝑡 for the adjacent optimization 

periods was significant. This made the previous value method fail to reach the global minimum. As shown 

in Figure 11 (d), the previous value method was stuck at 22.44oC, which was the optimal 𝑇𝑐𝑤,𝑠𝑒𝑡 for the 

previous optimization period. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11 The scenarios when different starting point selection methods failed to find the global 

minmum 

 

To understand why relatively large searching failure ratios only led to small differences in energy savings, 

we analyzed the energy saving penalty due to failures in identifying the optimal condenser water set point. 

Based on Figure 12, for all the methods, more than 90% of the energy saving penalties are less than 5%. 

As shown in Figure 11, the energy saving penalties can be as low as 0.20%. Thus, although the searching 

failure ratios of those methods are up to 12.30%, the impact of the searching failures on the total energy 

savings is not quite significant. 
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Figure 12 The energy saving penalty due to the failure in predicting the optimal condenser water set 

point 

 

4.5 Evaluation of the Impact of the Optimization Frequency on the Energy Saving 

To model the uncertainties in the load and weather prediction due to long prediction horizons (one day and 

one week), we used the following equation to generate the synthetic errors: 

𝑄̇∗ = 𝑄̇ + 𝑟𝑎𝑛𝑑𝑜𝑚(−Δ𝑄̇ , Δ𝑄̇), (27) 

𝑇𝑤𝑏
∗ = 𝑇𝑤𝑏 + 𝑟𝑎𝑛𝑑𝑜𝑚(−Δ𝑇𝑤𝑏 , Δ𝑇𝑤𝑏) + 𝑇𝑠𝑡𝑎𝑒𝑟𝑟, (28) 

where 𝑄̇∗ and 𝑇𝑤𝑏
∗ are the predicted cooling load and wet bulb temperature with errors. 𝑇𝑠𝑡𝑎𝑒𝑟𝑟 is the static 

error occurs in the wet bulb temperature prediction. For the hourly optimization, we assumed Δ𝑄̇ = 0 W, 

Δ𝑇𝑤𝑏 = 0 K, and 𝑇𝑠𝑡𝑎𝑒𝑟𝑟 = 0 K so that we could use the results of the Hourly OPT as the benchmark for 

comparison. For the daily optimization, Δ𝑄̇ = 20%𝑄̇𝑛𝑜𝑚 , Δ𝑇𝑤𝑏 = 1 K, and 𝑇𝑠𝑡𝑎𝑒𝑟𝑟 = 1 K respectively. 

For the weekly optimization, Δ𝑄̇ = 40%𝑄̇𝑛𝑜𝑚  , Δ𝑇𝑤𝑏 = 2 K and Δ𝑇𝑤𝑏 = 0 K, and 𝑇𝑠𝑡𝑎𝑒𝑟𝑟 = 1 K. The 

𝑟𝑎𝑛𝑑𝑜𝑚(𝑎, 𝑏) is a function that returns a random value between the input range [a, b]. A daily optimization 

and a weekly optimization using the above inputs were named Daily OPT with Error and Weekly OPT with 

Error, respectively. The approach temperature starting point selection method was applied in all 

optimizations.  

 

Table 3 compares the performance of the optimization with different optimization frequencies. The Hourly 

OPT provided almost the same solution as the Hourly ES with about half of the computing time. By further 

reducing the number of optimizations, the Daily OPT and the Weekly OPT achieved an around 95.00% time 
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and 97.00% reduction in computing time with only 0.07% and 0.09% penalty in predicted energy saving 

than the Hourly ES, respectively. Compared to the Hourly OPT, the Daily Opt and the Weekly OPT were 

about 10 times and 15 times faster and provides energy savings of only 0.07% less. The reason why the 

Daily Opt and the Weekly OPT did not achieve 24 times and 168 times faster than the Hourly OPT is 

because the daily and weekly simulation cost more time to solve than the hourly simulation. Even with 

uncertainties in the 𝑄̇ and 𝑇𝑤𝑏 prediction, the Daily OPT with Error and the Weekly OPT with Error got a 

similar energy savings compared to the Daily OPT and the Weekly OPT.  

Table 3 Perforamnces of different optimization frequencies 

 
Hourly 

OPT 
Daily OPT 

Daily OPT 

with Error  
Weekly OPT 

Weekly OPT 

with Error  

Annual Energy  

Consumption [kWh] 
5,028,148 5,031,571 5,031,752 5,032,502 5,032,199 

Energy Saving Ratio 9.67% 9.60% 9.60% 9.58% 9.59% 

Computing Time [s] 25,045 2,536 2,796 1,658 1,912 

Computing Time  

Reduction Ratio  
54.68% 95.41% 94.94% 97.00% 96.54% 

 

To understand why the impact of the optimization frequency on the energy savings is not significant, we 

investigated the profiles of the inputs for the condenser water set point optimization. Figure 13 shows the 

distribution of the daily and weekly standard deviations in the wet bulb temperature in Washington D.C. in 

2012. The standard deviations in the wet bulb temperature of all the days and the weeks are less than 6.00oC. 

This means the weather of the studied period (year of 2012) in Washington D.C. is relatively temperate 

with a small variation in the wet bulb temperature. We then looked at the cooling load distribution, since 

there are different cooling load profiles for different seasons in the cooling period, we selected two typical 

days with different cooling load profiles: one day is from the mild season (April 20th, Friday) and the other 

day is from the hot season (July 20th, Friday). Both the mild day and the hot day have the daily standard 

deviation in the wet bulb temperature less than 6.00oC.  
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Figure 13 The distribution of the standard deviations for the wet bulb temperature of Washington 

D.C. in 2012 

 

For the mild day, the cooling load changed from around 400 ton to 900 ton and the wet bulb temperate was 

from 11.00oC to 16.00oC (Figure 14). The Hourly OPT predicted the same results as the Hourly ES and a 

2,648 kWh (16.14%) energy saving was achieved. The Daily OPT produced a slightly different result with 

energy savings of 16.13%. The 𝑇𝑐𝑤,𝑠𝑒𝑡 was constant as 15.44oC from 0:00 to 13:00 because of the low wet 

bulb temperate. The 𝑇𝑐𝑤,𝑠𝑒𝑡  began to increase at 14:00 after 𝑇𝑤𝑏 passed 15.00oC. At around 17:00, 𝑇𝑐𝑤,𝑠𝑒𝑡 

suddenly raised to 20.44oC. The reason for the quick increase is that at 17:00, the cooling load decreased 

from 900 ton to 731 ton and the number of operating chillers reduced from 2 to 1. As a result, the cooling 

load was met by the remained operating chillers. With the increased cooling load, it took more effort for 

the dedicated cooling tower to cool the condenser water to the given 𝑇𝑐𝑤,𝑠𝑒𝑡, which makes the optimal 

𝑇𝑐𝑤,𝑠𝑒𝑡 increase. After 17:00, 𝑇𝑐𝑤,𝑠𝑒𝑡 began to decrease to reflect the reduced cooling load. It returned to 

15.44oC at 19:00 and remained unchanged for the rest time. The Daily OPT predicted 𝑇𝑐𝑤,𝑠𝑒𝑡 as 15.44oC 

and there are only four hours when the 𝑇𝑐𝑤,𝑠𝑒𝑡 by the Daily OPT and the Hourly OPT was different. 
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Figure 14 The simulation results for April 20, 2012 

 

As shown in Figure 15, the cooling load and the wet bulb temperate in the hot day were higher than those 

for the mild day in Figure 14. Again, the Hour OPT predicted the same results as the Hourly ES. Basically, 

the trajectory of 𝑇𝑐𝑤,𝑠𝑒𝑡  in the Hourly ES followed the change of 𝑇𝑤𝑏 during that day. The Daily OPT 

predicted 𝑇𝑐𝑤,𝑠𝑒𝑡 as 21.44oC. The energy savings from the Hour OPT were 682.4 kWh (2.31%) and that for 

the Daily OPT were 681.9 kWh (2.30%). Although there are only three hours when the 𝑇𝑐𝑤,𝑠𝑒𝑡 by the Daily 

OPT and the Hourly OPT are the same, the differences between the prediction by the Daily OPT and the 

Hourly OPT are not larger than 2.00oC.  
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Figure 15 The simulation results for July 20, 2012 

 

Based on the above analysis, we can see that despite of different cooling load profiles, the lower daily 

deviation in the wet bulb temperature makes the difference between the predictions by the Daily OPT and 

the Hour OPT not obvious.  

 

Similarly, the wet bulb temperature does not change significantly over a week so that the Weekly OPT could 

achieve similar performance to the Daily OPT. The standard deviations for the weeks, to which April 20 

and July 20 belong, are 3.36oC and 1.81oC, respectively. As a result, the predictions by the Weekly OPT for 

the two weeks are 15.44oC and 24.44 oC, which are both close to the results by the Daily OPT for April 20 

and July 20, respectively.   
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5. Conclusion 

In this paper, we proposed an operational support system to improve the operational efficiency of condenser 

water loops in legacy chiller plants. We evaluated how different starting point selection methods and the 

optimization frequency affect the condenser water set point optimization results via a case study. Based on 

the results of the case study, the following conclusions can be drawn: 

1) The proposed system can achieve significant energy savings for the studied chiller plant. The 

annual energy saving ratio is up to around 9.67%. It should be noted that the energy savings is 

reached without adding new equipment or requiring significant efforts for implementation. 

 

2) Optimization starting point selection does not significantly impact energy savings from the 

condenser water set point optimization for the studied chiller plant significantly, although it does 

impact the computing time and the failure rate on finding the global optimum. The previous value 

method can achieve the fastest search but it also obtains the largest failure number. The approach 

temperature method is promising since it has a failure rate 2-3 times lower than other methods. The 

computing time of the approach temperature method is almost the same as the previous value 

method. 

 

3) The optimization frequency doesn’t significantly affect the energy savings from the condenser 

water set point optimization for the studied chiller plant. This is because the daily and weekly 

variation in the wet bulb temperature is not very large for the site in the studied year, which leads 

to small differences between the predictions of the optimal condenser water set point with different 

optimization frequencies. 

 

In this paper, we demonstrated the performance of the operational support system via a single chiller plant 

with one type of climate condition. It will be interesting to perform more simulations to access the energy 

saving potential of this approach for different plant configurations, cooling loads, and climates in the future 

work. As a pilot study, we manually developed the dedicated model for the studied plant and calibrated the 

models according to the measured data. To enable the large scale application, it is worth investigating how 

to automatize the procedure for creating and calibrating the chiller plant models so that the efforts for 

implementation can be minimized.   
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