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ABSTRACT 

In this paper, four different data-driven algorithms 
including AutoRegressive with eXternal inputs 
(ARX), State Space (SS), Subspace state space (N4S) 
and Bayesian Network (BN) are evaluated and 
compared using a case study of predictions of Air 
Handler Unit (AHU) thermal energy consumption. 
Training and testing data are generated from a 
dynamic Modelica-based AHU model. Four 
evaluation metrics of Root Mean Squared Error 
(RMSE), coefficient of determination (R2), 
Normalized Mean Bias Error (NMBE) and Coefficient 
of Variation of the Root Mean Square Error (CV-
RMSE) are used to compare the model prediction 
performance of different algorithms. The best 
algorithm is selected and proposed following the 
criteria recommonded by ASHRAE Guideline 14. 
Using the proposed data driven algorithm, the relation 
of AHU energy consumption with mixed air 
temperature, air flow rate, and supply water 
temperature are obtained. In the future, such 
correlations will be employed for an optimization 
analysis of AHU energy consumption. 

INTRODUCTION 
Accurate energy performance predictions of Heating, 
Ventilation and Air-conditioning (HVAC) system 
play a significant role for building energy system 
performance optimization (e.g., optimal controls) to 
reduce energy consumption. Currently, there are 
mainly two kinds of prediction models: physics based 
model prediction and data driven based model 
prediction (Zhao, 2012). Physics based model 
prediction uses physical principles to present an entire 
or sub-system inherent thermodynamic performance. 
It can indicate the heat and mass transfer process in all 
individual components. Nowadays, the complex 
building energy performance modeling can be 
conducted using simulation programs such as DOE-2, 
EnergyPlus, Modelica, TRNSYS and Simulink (Ma et 
al. 2011, Candanedo et al. 2011, Henze et al. 2005, 
Morosan et al. 2010, and Karlsson et al. 2011). Physics 
based modeling in general is a time-consuming and 
labor intensive method. In addition, sometimes, it also 
needs high processing device to compute linear or 

nonlinear, steady or dynamic mathematic model. Even 
so, precise prediction using physics based models is 
not easy to achieve due to assumptions and uncertainty 
associated with input variables.  

In actual HVAC systems, large amounts of raw data 
are monitored, trended and saved in Building 
Automation System (BAS). In fact, such data 
represents the performance of building energy system, 
which includes inherent information and relation of 
each subsystem or component of building. Therefore, 
how to utilize these building data to do energy 
performance analysis, energy diagnosis, and system 
operation optimization is needed. Researchers started 
to use data driven algorithms to explore historical 
performance data from BAS for energy performance 
prediction. The data-driven approach overcomes the 
drawbacks of physical modeling and has been applied 
for energy consumption prediction and fault diagnosis 
in buildings. Kusiak et al. (2010) built prediction 
models based on real test data using multiple-linear 
perceptron (MLP) algorithm for a chiller, a pump, a 
fan, and a reheat device. An energy optimization 
model integrated these four models with two dominant 
variables of the supply air temperature setpoint and the 
static pressure setpoint. The optimization results 
indicated that a 7.66% energy saving can be achieved. 
An artificial neural network (ANN) based data-driven 
approach ensembling with five multi-layer perceptron 
performed the best among tested data-mining 
algorithms and therefore was selected for the 
prediction model (Kusiak, et al. 2010). Outdoor air 
temperature and relative humidity were used as input 
variables of the prediction model. Practical archetype 
of building operation data was collected by University 
of Iowa for training and testing. Most of the existing 
ANN models for building energy prediction are static, 
while this research evaluates the performance of 
adaptive ANN models that are capable of adapting 
themselves to unexpected pattern changes in the input 
data, and therefore can be applied to the real-time and 
on-line building energy prediction (Yang et al. 2005). 
Two adaptive ANN models are proposed and tested in 
Yang’s study: accumulative training and sliding 
window training. Yun et al. (2010) predicted building 
hourly thermal load using an ARX435 model. Results 
indicated that the ARX model was more accurate than 
the models of MLR, AR and ANN in that case. 
Yoshida et al. (2001) used ARX model in the fault 
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detection technique for an off-line analysis. The 
performance of a VAV sub-system was modelled 
using an ARX model created from actual building 
data. It was concluded that the off-line analysis of data 
by this model was likely to detect most of faults such 
as problems in damper control. Ma et al. (2011) used 
ARX models to mimic the behaviour of EnergyPlus 
models. The model inputs were temperature setpoints 
for each zone and outputs were actual zone 
temperature and power measurements. The 
optimization problem with economic objective and 
several constraints was transformed into a linear 
programming and solved in each time step. It was 
shown by a continuous weekly simulation that for a 
smart grid with time-based pricing, the proposed 
method could bring substantial cost savings by 
automatically triggering pre-cooling effect and 
shifting the peak demand away from on-peak period. 
Cai and Braun (2013) introduced the theory of state 
space sub-space (N4S) identification and applied it to 
a single wall and a multi-zone building. Performance 
comparisons of N4S and gray-box models showed that 
N4S had a high accuracy and was computationally 
efficient. However, N4S prediction method requires 
more training data and the data with sufficient 
operation range to guarantee the model prediction 
accuracy.  

Both linear regression and Gaussian process 
regression were used to develop an inverse model for 
a building case (Zhang et al. 2013, Zhang et al. 2015). 
From the comparisons, it is concluded that the inverse 
modeling is a realistic and efficient way to estimate 
the baseline building performance in the post-retrofit 
phase. The Gaussian Process (GP) approach leads to a 
highly flexible model, which can easily capture the 
complex building behaviour. It can provide more 
realistic results compared with linear regression 
model. The predictive quality of the GP model is 
strongly influenced by the range covered by the 
training and testing data set. O’Neill (2014) presented 
the development of a data driven probabilistic graphic 
model to predict building HVAC hot water energy 
consumption. A directed graphical model, namely, a 
Bayesian Network (BN) model was created for such a 
purpose. Each node in the BN represents a random 
variable such as outside air temperature, energy end 
usage, etc. The links between the nodes are 
probabilistic dependencies among these 
corresponding variables. These dependencies are 
statistically learnt and/or estimated by using measured 
data and augmented by domain expert knowledge. The 
prediction result by BN indicated that it was 
acceptable prediction method while providing more 
information such as uncertainty associated with 
predictions.  

Many other data driven algorithms are being explored 
in the field of building energy performance prediction 
and operation managment. Each algorithm has its own 
advantages and disadvantages. Choosing an 
appropriate method for a specific case is critical to 

guarantee a successful energy operation management 
in buildings. Currently, there is a lack of research work 
on assessment of different data driven algorithms 
using the same data set. In this paper, four commonly 
used data driven algorithms of ARX, SS, N4S and BN 
are evaluated and compared with the criteria 
recommended by ASHRAE Guideline 14 (ASHRAE 
2002).  

We first briefly introduce the fundamentals of four 
data-driven algorithms. Then, a Modelica-based 
dynamic model will be presented for data generation. 
This will be followed by results and conclusions.   

METHODOLOGIES 

Autoregressive with external inputs (ARX) 

The most used model structure for ARX model is the 
simple linear difference equation:  

: ( ) ( ) ( ) ( ) ( )ARX A q y t B q u t nk e t= − +  (1) 

Where n is the number of time-step delay transferring 
from input u(t) to output y(t), e(t) is error. A(q) and 
B(q) are polynomials in terms of the time delay 
operator (q-1) given in Equation 2 and Equation 3.  

1 2
1 2( ) 1 ........ na

naA q a q a q a q− − −= + + +
 

(2) 
1 2 1

1 2( ) 1 ........ nb
nbB q b q b q b q− − − −= + + +  (3) 

The example of ARX with shift operator polynomials 
is as follows: 

1

1

: ( ) ( 1) ... ( )

( ) ... ( 1) ( )
na

nb

ARX y t a y t a y t na
b u t nk b u t nk nb e t

+ − + + − =
− + + − − + +  

(4) 

This ARX model relates the current output y(t) to a 
finite number of past output y(t-na) and input u(t-nb). 
The structure is entirely defined by three 
integers na, nb, and nk. na and nb are the order of 
input and output, while nk is the pure time-delay in the 
system. For a system under sampled-data control, 
typically nk is equal to 1 if there is no dead-time. 

State space (SS) 

The state space of a dynamical system is the set of all 
possible states of the system. The values of all the state 
variables completely describe the system state. In 
other words, each point in the state space corresponds 
to a different state of the system. State-space 
models are models that use state variables to describe 
a system by a set of first-order differential or 
difference equations, rather than by one or more nth-
order differential or difference equations. The SS 
model has been successfully applied in engineering, 
statistics, computer science and economics to solve a 
broad range of dynamical systems problems.  State 
variables x(t) can be reconstructed from the measured 
input-output data, but are not themselves measured 
during an experiment. 
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( ) A ( ) B ( )x t x t u t= +

 (5) 

( ) C ( ) D ( )y t x t u t= +  (6) 

The internal state variables are the smallest possible 
subset of system variables that can represent the entire 
state of the system at any given time (Nise, 2010). The 
minimum number of state variables required to 
represent a given system, is usually equal to the order 
of the system's defining differential equation. 

Subspace state space (N4S) 

Subspace state space can be derived from state space 
form (Cai and Braun, 2013). Assuming state space 
form with noise terms can be described in the 
following. 

( ) A ( ) B ( ) ( )x t x t u t tω= + +  (7) 

( ) C ( ) D ( ) ( )y t x t u t v t= + +  (8) 

 Defining 

( )

( 1)
( )

( 1)

r

y t
y t

Y t

y t r

 
 + =
 
 + − 



;

( )

( 1)
( )

( 1)

r

u t
u t

U t

u t r

 
 + =
 
 + − 



;

( )

( 1)
( )

( 1)

r

w t
w t

W t

w t r

 
 + =
 
 + − 



,  

Therefore, the state space equation is transformed: 

  1 2

( ) C ( ) D ( ) ( )

CA ( ) CA CA C

(B ( ) ( )) ( )

k k k

k k

y t k x t k u t k t k

x t

U t W t v t k

ν
− −

+ = + + + + +

 = + × 
+ + +



    (9) 

Stacking and abbreviating the equation, the final 
model is obtained: 

                      r r rY O X S U V= + +                  (10) 

Where 

1

r

r

C
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O

CA −
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2 3
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r
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S
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 
 =
 
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 





    
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Bayesian network (BN) 

A BN is a graphical model that encodes probabilistic 
relationships among variables of interest. When used 
in conjunction with statistical techniques, the 
graphical model has several advantages for data 
analysis. First, because the model encodes 
dependencies among all variables, it readily handles 
situations where some data entries are missing. 
Second, a BN can be used to learn causal relationships, 
and hence it can be used to gain understanding of a 
problem and to predict the consequences of 
intervention. Third, because the BN has both a causal 
and probabilistic semantics, it is an ideal 

representation for combining prior knowledge (which 
often comes in causal form) and data. Fourth, 
Bayesian statistical methods in conjunction with 
Bayesian networks offer an efficient and principled 
approach for avoiding the overfitting of data 
(Heckerman, 1997). A BN is a probabilistic graphical 
model that represents a set of random variables and 
conditional dependence through a direct acyclic graph 
(DAG). In the graphical model, the node that causes 
another node is called a parent and the affected node 
is called its child. The child is conditioned by the 
parent. Given A is a parent and B is a child of A, the 
probability of B conditioned by A is noted P(B|A). 
Bayes theorem describes probabilistic dependencies 
between A and B as follows (Jensen, 2001): 

P(A|B)P(B)
P(B|A)=

P(A)
 (11) 

For continuous variable, the conditional probability 
distribution will obey the normal distribution 
regulation N (µ, σ2). The probabiltiy formula is shown 
in Eq. (12). The BN approach can encode the 
background knowledge of the system as prior expert 
knowledge and also discover new relationships within 
data streams using structure learning algorithms. Thus 
this approach would allow leveraging of both system 
domain knowledge and statistical data-mining 
algorithms. 

( )2
221

( )
2

x

P X e
µ

σ

πσ

− −

=  (12) 

It is common to consider BNs consisting of nodes with 
discrete variables (Laur, 2009). If a distribution is 
continuous, then marginalisation becomes a 
challenging problem. The marginal distribution of 
a subset of a collection of random variables is the 
probability distribution of the variables contained in 
the subset. It gives the probabilities of various values 
of the variables in the subset without reference to the 
values of the other variables. Although many families 
of exponential distributions are known to be closed 
under the multiplication, the multivariate normal 
distribution is also closed under the marginalisation. 
To have a multivariate normal distribution N (µ, Σ), 
first, we need to derive formulas for multiplication and 
marginalisation of normal distributions. Then, we 
need to verify that when the conditional distributions 
are specified through a normal distribution. In this 
case study, all output and input variables are 
continuous. Therefore, BN network with continuous 
variables will be utilized to predict AHU energy 
consumption.  

DATA GENERATION 

In this case study, we are using simulations to generate 
data for training and testing different data-driven 
algorithms. Dymola with a friendly interface based on 
Modelica programming is applied to simulate the 
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AHU system with air-side economizer.  The LBNL 
Modelica Buildings library (Wetter et al. 2014) is a 
free open-source library with building envelope and 
HVAC system/component models. The library 
contains models for air-based HVAC systems, chilled 
water plants, water-based heating systems, controls, 
heat transfer among rooms and the outside and 
multizone airflow. This library also includes natural 
ventilation and contaminant transport. Fig.1 shows the 
Dymola simulation schematics of the AHU system, 
which mainly has an air-side economizer with a 
damper control and an air-to-water heat exchanger 
with a valve control. Supply air temperature was 
controlled at the setpoint of 50 oC using a PI controller. 
Three variables of supply water temperature, mixed 
air temperature and mixed air mass flow rate are used 
as inputs for a data-driven model to predict water 
thermal energy consumption. 

 
Fig.1 Diagram of Modelica models for AHU system 

In order to get sufficient data for covering entire 
operation condition, excitation signals to outdoor air 
pressure, return air pressure and supply water pressure 
are needed. A common excitation signal was 
generated by Simulink program as presented in Fig. 2. 
The excitation signal, as shown in Fig.3, was random 
distribution in a range between 0.4 and 1.  Based on 
the signal, outdoor air pressure and return air pressure 
are defined using Equation (13). Therefore, the 
pressure difference of air sources and sinks can 
provide sufficient excitation data to train and test 
different prediction algorithms. For the water side, 
supply water pressure is given by Equation (14). The 
water pressure difference is 40325ω Pa, which can 
guarantee the sufficient excitation range. ɷ is the 
excitation signal.  

           oa,raP 101325 30 ω= + ⋅   (Pa)                (13) 

           w-supplyP 201325 40325 ω= + ⋅   (Pa)      (14) 

Mixed air temperature and supply water temperature 
after excitations are presented in Fig.4. The supply 
water temperature is varied from minimum value of 70 

oC to peak value of 95 oC. The mixed air temperature 
is varied from 16 oC to 21 oC. Fig. 5 shows the mixed 
air mass flow rate. Because of the excitation signal to 

outdoor and return air pressure, the mixed air mass 
flow rate is ranged from 10 kg/s to 70 kg/s.  

 
Fig.2 Excitation signal generation Simulink program 

 

 
Fig.3 Excitation signal  
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Prediction output variable water energy consumption 
from the simulation is shown in Fig.6. Enough 
excitation can satisfy the prediction requirement from 
500 kW to 2000 kW.  
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Fig.6 Water energy consumption from Dymola 

Simulation 
 

For BN algorithm, the structure of direct acyclic graph 
affects the prediction result. In this case, three input 
variables of mixed air temperature, mixed air mass 
flow rate and supply water temperature is considered 
to be independent each other. Therefore, the BN direct 
acyclic graph for energy consumption prediction is 
defined as in Fig.7.  
 

 
Fig.7. Bayesian network direct acyclic graph for 

energy consumption prediction 
 

RESULTS AND DISCUSSIONS 
Firstly, the training data covering 2,500 hourly data 
points, as shown in Fig. 4, 5 and 6, was used to train 
the prediction models. Then, hourly testing data of 
totally 570 hours was applied to test the accuracy of 
the trained model for energy consumption predictions. 
All algorithms were implemented using Matlab.  

Of all ARX prediction models, na and nb are the 
orders of input and output which are suggested in the 
range of 1 to 10, while nk is the pure time-delay in the 
system. In this case study, there is no dead time. 
Therefore, nk is equal to 1. Of all possible ARX 
models, ARX 3-3-1 (i.e., na and nb are both equal to 
3) had the best performance and was utilized to predict 
energy consumption. According to results shown in 
Fig.8, the big error happened when the actual energy 
consumption was at either high or low conditions. The 
absolute prediction error is 600 kW when the actual 
energy consumption is at the highest value of 1750 kW 
with a relative error of 34.3%. The absolute error is 
640 kW when the actual energy consumption is at the 
lowest value of 860 kW with a relative error of 74.4%.  

ARX model failed to predict water thermal energy 
consumption in this case study.  
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Fig.8 Energy consumption prediction by ARX model 

 
Fig.9 and Fig.10 present the prediction results of SS 
and N4S models, respectively. The tested and 
predicted curves have the same tends. In addition, the 
prediction results from both models are similar. There 
is very little difference between SS and N4S 
prediction results. However, a critical issue is time-
delayed prediction compared with tested value. Three 
or four hours delay existed for SS and N4S prediction. 
The prediction results will be marginally accepted if 
the prediction objective only focuses on total building 
energy performance auditing. However, the prediction 
performances do not satisfy the requirement if the 
objectives are for real-time building operation control 
and management. There is a need for more training 
data spanned over the full range of operation to 
improve data-driven model prediction  accuracy. On 
the other hand, continuous BN model has the best 
prediction performance as presented in Fig.11. 
Comparing with the above three prediction methods, 
BN model has the least error and no time-delay 
prediction phenomenon. Fig.12 shows the 
comparisons of the tested and predicted energy 
consumption from BN model. The dark dash lines are 
±15% error lines. Almost all of the predictions are 
with ±15% error band.  
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Fig.9 Energy consumption prediction by SS model 
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Fig. 10 Energy consumption prediction by N4S 

model 
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Fig.11 Energy consumption prediction by BN model 
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Fig.12 Comparisons of tested and predicted energy 

consumption prediction by BN model with ±15% 
error lines 

 
In order to quantitatively evaluate and judge whether 
each method can meet the recommendations from  
ASHRAE guideline 14. R2, RMSE, CV-RMSE 
NMBE, and NRMSE are used to indicate the statistic 
feature of the prediction. R2, which measures the 

proportion of total variation explained by the fitted 
regression model is computed from: 

                 

2
12

2
1

ˆ(y y )
1

(y y )

n
i i i
n
i i i

R =

=

−
= −

−
∑
∑

           (15) 

The Root Mean Squared Error (RMSE) is computed 
from: 

           

2
1 ˆ(y y )n

i i iRMSE
n p
= −

=
−

∑
           (16) 

The coefficient of variation of the root mean square 
error (CV-RMSE) is computed from: 

          100
RMSECV RMSE

y
− =            (17) 

The normalized mean bias error (NMBE) is 
computed from: 

       
1 ˆ(y y )

100
( )

n
i i iNMBE

n p y
= −

= ×
− ×

∑
            (18) 

The normalized root mean square error (NRMSE) is 
computed from: 

                  
max min

RMSENRMSE
y y

=
−

           (19) 

ASHRAE Guideline 14 (ASHRAE 2012) 5.3.2.1 
requires that the baseline model shall meet the CV-
RMSE and NMBE requirement. The required values 
are dependent of data sampling frequency as listed in 
Table 1 ASHRAE Guideline 14 only provides 
requirements for monthly and hourly model. The 
required value of the daily model is interpolated based 
on monthly and hourly model. 

Table 1  
Recommended value for baseline model from 

ASHRAE Guideline 14 
 

 Monthly Daily Hourly 
CV-RMSE 15% 22% 30% 
NMBE 5% 7% 10% 

 

Table 2 shows all the staticistics indices resulting from 
four different data-driven models. Compared with 
ASHRAE's recommoned values listed in Table 1, all 
algorithms satisfy the ASHRAE recommned criteria 
for a sampling frequncey of one hour. The CV-RMSE 
of ARX model is 23.96%. Both SS and N4s have a 
close CV-RMSE about 21%. BN model has the 
minimum CV-RMSE of 7.58%. BN is the best 
prediction algorithm in this case. For RMSE index, 
ARX, SS and N4S models is more than 250. 
Nevertheless, the RMSE of BN model is less than 100.  
Throught the above analysis, BN model is the best 
prediction model of all four models. Although, all four 
models meet the ASHRAE recommoned CV-RMSE 
and NMBE criteria.. ARX model has the biggest error 
and at the same time the error becomes bigger when 
the energy consumption is at the low or the high 
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conditions. In addition, SS and N4S models have the 
time delay prediction problem. It will affect the real 
time building energy control and analysis.  

 
Table 2 

Evaluation performance of four prediction models 
 

 ARX SS N4S BN 
R2 -0.832 -0.444 -0.423 0.817 
RMSE 284.53 252.60 250.86 90.04 
CV-
RMSE 

23.96% 21.27% 21.12% 7.58% 

NMBE -9.05% -4.34% -2.18% -6.63% 
NRMSE 0.323 0.287 0.285 0.102 

 

CONCLUSIONS 
Four different data driven algorithms including 
AutoRegressive with eXternal inputs (ARX), State 
Space (SS), Subspace state space (N4S) and Bayesian 
Network (BN) are evaluated and compared using a 
simulation based case study of predictions of AHU 
thermal energy consumption. 

Modelica simulation program is used to generate 
training and testing data. In order to obtain sufficient 
range of input and output variables, excitation signals 
are given to outdoor air pressure, return air pressure 
and supply water pressure. Based on the prediction 
results analysis, the following conclusions are made: 

1) Of all four prediction models, ARX model has the 
worst prediction performance. BN model has the 
most accurate prediction result. 

2) SS and N4S models have the time-delay 
prediction.   

3) Although four models satisfy the ASHRAE 
Guideline 14’s criteria of   CV-RMSE and 
NMBE, other indexes are needed to further 
evaluate these data driven prediction algorithms 
for real-time intelligent building operations.    

Our future works includes: 1) analyze and evaluate 
more data-driven algorithms such as artificial 
neural network (ANN) and support vector machine 
(SVM); 2) apply these prediction algorithms to the 
other HVAC and building systems; 3) utilize the 
selected best algorithm for example, Bayesian 
network, for model based optimal controls in 
buildings 
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NOMENCLATURE 
a =  coefficent 
b = coefficent 
na = order 
nb = order 
nk = time delay 
q = time delay opeator 
u = input 
y = output 
x = state variable 
e = error 
P = probability 
oa =  outdoor air 
ra = return air 
w = water 

µ = mean value 
σ = standard deviation 
ω = signal 
A = state or system matrix 

ARX = autoregressive with external inputs  

B = input matrix 

BN = Bayesian network 

C = output matrix 
CV-RMSE = coefficient of variation of the root mean 
D = feed forward matrix 

N4S = subspace state space  
NMBE = normalized mean bias error  
NRMSE =  normalized root mean square error  
P = pressure 
RMSE = root mean squared error  
R2 = coefficient of determination  
SS = state space  
Y = output matrix 

U = input matrix 

O = state process matrix 

V = noise process matrix 

S = input process matrix 
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