
1 

 

J. Wang, S. Huang, W. Zuo, D. Vrabie 2021. “Occupant Preference-Aware Load 1 

Scheduling for Resilient Communities.” Energy and Buildings, 252, pp. 111399. 2 

https://doi.org/10.1016/j.enbuild.2021.111399 3 

 4 

 5 

Occupant Preference-Aware Load Scheduling for Resilient Communities 6 

Jing Wanga, Sen Huangb, Wangda Zuoa,c,*, Draguna Vrabieb 7 

a University of Colorado Boulder, Department of Civil, Environmental and Architectural 8 

Engineering, Boulder, CO 80309, United States 9 

b Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States 10 

c National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, 11 

United States 12 

 13 

 14 

Abstract 15 

The load scheduling of resilient communities in the islanded mode is subject to many uncertainties 16 

such as weather forecast errors and occupant behavior stochasticity. To date, it remains unclear 17 

how occupant preferences affect the effectiveness of the load scheduling of resilient communities. 18 

This paper proposes an occupant preference-aware load scheduler for resilient communities 19 

operating in the islanded mode. The load scheduling framework is formulated as a model 20 

predictive control problem. Based on this framework, a deterministic load scheduler is adopted as 21 

the baseline. Then, a chance-constrained scheduler is proposed to address the occupant-induced 22 

uncertainty in room temperature setpoints. Key resilience indicators are selected to quantify the 23 

impacts of the uncertainties on community load scheduling. Finally, the proposed preference-24 

aware scheduler is compared with the deterministic scheduler on a virtual testbed based on a real-25 

world net-zero energy community in Florida, USA. Results show that the proposed scheduler 26 

performs better in terms of serving the occupants’ thermal preference and reducing the required 27 
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battery size, given the presence of the assumed stochastic occupant behavior. This work indicates 28 

that it is necessary to consider the stochasticity of occupant behavior when designing optimal load 29 

schedulers for resilient communities.  30 

Keywords: Microgrid; Optimal load scheduling; Uncertainty; Occupant behavior; Resilient 31 

community; Model predictive control. 32 

Nomenclature 33 

Parameters 𝐸𝑏𝑎𝑡
𝑡  battery energy 

𝑎 
intercept coefficient for the logistic 

regression model 
𝑃𝑐ℎ

𝑡  battery charging power 

𝑏 
slope coefficient for the logistic regression 

model 
𝑃𝑐𝑟𝑖𝑡,𝑗

𝑡  scheduled critical loads 

𝐸𝑏𝑎𝑡 upper limit of battery energy 𝑃𝑐𝑢𝑟𝑡
𝑡  curtailed PV power 

𝑒 mathematical constant 𝑃𝑑𝑖𝑠
𝑡  battery discharging power 

H MPC prediction horizon 𝑃ℎ𝑣𝑎𝑐
𝑡  HVAC system (heat pump) total power 

N simulation horizon 𝑃𝑙𝑜𝑎𝑑
𝑡  total scheduled loads 

𝑁𝑐𝑟𝑖𝑡  number of critical loads in each building 𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡  scheduled modulatable loads 

𝑁𝑚𝑜𝑑𝑢  
number of modulatable loads in each 

building 
𝑃𝑠ℎ𝑒𝑑,𝑗

𝑡  scheduled sheddable loads 

𝑁𝑠ℎ𝑒𝑑  number of sheddable loads in each building 𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡  scheduled shiftable loads 

𝑁𝑠ℎ𝑖𝑓 number of shiftable loads in each building 𝑃𝑝𝑣
𝑡  PV power 

𝑛𝑠ℎ𝑖𝑓,𝑗 average cycle time of each shiftable load 𝑟ℎ𝑣𝑎𝑐
𝑡  speed ratio of the heat pump 

𝑃𝑏𝑎𝑡 upper limit of battery power 𝑇𝑟𝑜𝑜𝑚 indoor air temperature 

𝑃̂𝑐𝑟𝑖𝑡,𝑗
𝑡  critical load data 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠 starting operation time of shiftable loads 

𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚 HVAC system (heat pump) nominal power 𝑄𝑔𝑎𝑖𝑛
𝑡  internal heat gain 

𝑃𝑙𝑜𝑎𝑑

𝑡
 predicted loads upper bound Binary Variables 

𝑃̂𝑚𝑜𝑑𝑢,𝑗
𝑡  modulatable load data 𝑢𝑠ℎ𝑒𝑑,𝑗

𝑡  
binary decision variable for sheddable load 

on/off status 

𝑃̂𝑠ℎ𝑒𝑑,𝑗
𝑡  sheddable load data 𝑣𝑠ℎ𝑖𝑓,𝑗

𝑡  
binary variable for shiftable load starting 

time 
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𝑃𝑠ℎ𝑖𝑓,𝑗,𝑎𝑣𝑔 
average nominal power of each shiftable 

load 
Abbreviations 

𝑝 probability of setpoint-changing actions BAL building agent layer 

𝑺𝑠ℎ𝑖𝑓,𝑗 scheduling matrix for each shiftable load CDF cumulative distribution function 

𝑇𝑎𝑚𝑏
𝑡  ambient outdoor temperature COL  community operator layer 

𝑇𝑟𝑜𝑜𝑚 lower room temperature bound DER distributed energy resource 

𝑇𝑟𝑜𝑜𝑚 upper room temperature bound DR demand response 

𝑄𝑠𝑜𝑙
𝑡  solar irradiance HVAC heating, ventilation, and air-conditioning 

𝛾 penalty coefficients KRI key resilience indicator 

∆𝑡 timestep MPC model predictive control 

𝜖, 𝜖𝑇 maximum constraint violation probability RC resistance-capacitance 

𝜂𝑐ℎ battery charging efficiency RMSE Root Mean Square Error 

𝜂𝑑𝑖𝑠 battery discharging efficiency SOC state of charge 

𝜇𝑇
𝑡  mean of room temperature error distribution PDF probability density function 

𝜎𝑇
𝑡  

standard deviation of room temperature 

error distribution 
PID proportional integral derivative 

Continuous Variables PV photovoltaics 

 34 

1 Introduction 35 

Due to the increasing frequency of extreme weather events such as the 2021 Texas Power Crisis 36 

[1], there is an emerging need for community resilience studies. Resilient communities refer to 37 

those that can sustain disruptions and adapt to them quickly by continuing to operate without 38 

sacrificing the occupants’ essential needs [2, 3]. Enabling technologies for resilient communities 39 

often involve distributed energy resources (DERs) such as photovoltaics (PV) and electrical energy 40 

storage (EES) systems. When disconnected from the main grid, the adoption of advanced control 41 

techniques can help enhance community resilience.  42 

As an advanced control technique, optimal load scheduling determines the operation schedules of 43 

controllable devices in the community to achieve optimization objectives. For a resilient 44 

community, typical controllable assets include the EES, PV, and thermostatically controllable 45 
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devices in buildings such as the heating, ventilation, and air-conditioning (HVAC) system. 46 

Building plug loads that are sheddable, shiftable, or modulatable can also be considered flexible 47 

loads in islanded circumstances [4]. The objectives of the load scheduling for resilient 48 

communities often involve maximizing the self-consumption rate of locally generated PV energy, 49 

minimizing PV curtailment, and minimizing the unserved ratio to critical loads. 50 

It is important to account for uncertainties when designing a load scheduler for resilient 51 

communities. Moreover, due to the limited amount of available PV generation during off-grid 52 

scenarios, the uncertainties need to be more carefully dealt with to ensure a satisfying control 53 

performance. Sources of uncertainties for a community load scheduling problem mainly lie in two 54 

aspects: power generation and consumption. For renewable energy generation, weather forecast 55 

errors play a prominent role in the cause of uncertainty. Whereas, for energy consumption, 56 

occupant behavior stochasticity is a major source of uncertainty.  57 

Much of existing load scheduling research has considered the uncertainty of weather forecasts [5–58 

13]. Kou [5] proposed a comprehensive scheduling framework for residential building demand 59 

response (DR) considering both day-ahead and real-time electricity markets. The results 60 

demonstrated the effectiveness of the proposed approach for large-scale residential DR 61 

applications under weather and consumer uncertainties. Garifi [13] adopted stochastic 62 

optimization in a model predictive control (MPC)-based home energy management system. The 63 

indoor thermal comfort is ensured at a high probability with uncertainty in the outdoor temperature 64 

and solar irradiance forecasts. Faraji [6] proposed a hybrid learning-based method using an 65 

artificial neural network to precisely predict the weather data, which eliminated the impact of 66 

weather forecast uncertainties on the scheduling of microgrids. Similarly, in the authors’ previous 67 

publication [7], normally distributed outdoor temperature and solar irradiance forecast errors were 68 

introduced into the community control framework, which accounted for the uncertainties in the 69 

weather forecasts.  70 

However, the uncertainties from the power consumption perspective, especially the occupant 71 

behavior uncertainty, is rarely accounted for in load scheduling research [14–18]. Some efforts to 72 

integrate occupant behavior modeling can be found in studies of building optimal control [19–22]. 73 

Aftab [19] used video-processing and machine-learning techniques to enable real-time building 74 

occupancy recognition and prediction. This further facilitated the HVAC system operation control 75 
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to achieve building energy savings. Lim [20] solved a joint occupancy scheduling and occupancy-76 

based HVAC control problem for the optimal room-booking (i.e., meeting scheduling) in 77 

commercial and educational buildings. Both the occupancy status of each meeting room and the 78 

HVAC control variables were decision variables. Mixed-integer linear programming was adopted 79 

to optimally solve the optimization problem.  80 

Notably, all of the preceding control work considered the stochasticity of building occupancy 81 

schedules, but the integration of other types of occupant behavior into building optimal control is 82 

not well studied in existing literature. Some researchers integrate the occupant thermal sensation 83 

feedback into the MPC for buildings [23, 24]. For instance, Chen [23] integrated a dynamic thermal 84 

sensation model into the MPC to help achieve energy savings using the HVAC control. For the 85 

occupant sensation model, the predictive performance of certainty-equivalence MPC and chance-86 

constrained MPC were compared.  87 

To summarize, the literature review shows that current research mainly focuses on the load 88 

scheduling of single buildings under grid-connected scenarios. There is a lack of research on the 89 

optimal load scheduling of resilient communities informed by occupant behavior uncertainties in 90 

the islanded mode. Given this gap, this paper proposes an occupant preference-aware load 91 

scheduling framework for resilient communities in the islanded mode. The occupants’ thermal 92 

preference for indoor air temperature will be reflected in the integration of thermostat adjustment 93 

probabilistic models. The optimal load scheduling is formulated as an MPC problem, so the 94 

stochastic thermostat-changing behavior will be regarded as the uncertainty in the MPC problem. 95 

Different methods, such as the offset-free method and robust method, can be used to handle the 96 

uncertainties in MPC problems [25]. The chance-constraint method, also known as the stochastic 97 

MPC, was selected to deal with the uncertainty in occupant preference in our study. It allows the 98 

violation of certain constraints at a predetermined probability. It thus enables a systematic trade-99 

off between the control performance and the constraint violations [26]. The advantage of 100 

addressing occupant preference uncertainty by using the chance-constraint method lies in the a 101 

priori handling of the uncertainty, which does not require the extra error-prediction models needed 102 

by other methods (i.e., offset free method), and thus simplifies the control problem [27]. Therefore, 103 

less computational effort is required after the control design phase. Though it requires the 104 
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controller to know the estimated uncertainty distribution beforehand, the development of occupant 105 

behavior probabilistic modeling will make knowing this less challenging.  106 

In this work, we consider the load scheduling of a resilient community in islanded mode during 107 

power outages. The goal is to study the impact of occupants’ thermal preference on the operation 108 

of an islanded community. The load scheduling problem of the community will be solved using 109 

an optimization-based hierarchical control framework. Occupant thermal preference will be 110 

integrated through thermostat changing behavioral models to inform the development of the load 111 

scheduler. The major contributions of this work include (1) a proposed new preference-aware load 112 

scheduler for resilient communities, which assures better control performance related to satisfying 113 

occupants’ thermal preferences and reducing the battery size; (2) the quantification of the impact 114 

of occupant thermostat-changing behavior on resilient community optimal scheduling using 115 

selected key resilience indicators (KRIs); and (3) the testing of the proposed scheduler on a high-116 

fidelity virtual testbed for resilient communities. 117 

The remainder of this paper is organized as follows: Section 2 details the research methodology. 118 

Section 3 describes the controllable device models used in this work involving the building HVAC 119 

models, load models, and battery models. Section 4 then discusses the deterministic versus 120 

stochastic scheduler formulations and proposes a chance-constrained controller for preference-121 

aware load scheduling of resilient communities. Section 5 applies the theoretical work to a case 122 

study community and quantifies the impact of occupant preference uncertainty. Simulation results 123 

and discussions are presented in this section. Finally, Section 6 concludes the paper by identifying 124 

future work. 125 

2 Methodology 126 

In this section, we first introduce a hierarchical optimal control structure for resilient community 127 

load scheduling. Based on the structure, a deterministic scheduler will be implemented as the 128 

baseline. Further, we propose a research workflow to implement a stochastic preference-aware 129 

scheduler for addressing uncertainties in occupant thermostat-changing behavior. KRIs are 130 

proposed at the end of this section. 131 
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2.1 Hierarchical Optimal Control for Resilient Communities 132 

In this study, we assume that the only energy resource accessible to the islanded community is on-133 

site PV generation and the batteries for an extended period of more than 24 hours. In this problem 134 

setting, in order to make full use of the limited amount of PV generation and satisfy the occupants’ 135 

essential needs, the building loads need to be shifted or modulated. The battery works as a temporal 136 

arbitrage for meeting the demand at night. In addition, the occupant thermal preference will affect 137 

the energy consumption of the HVAC system through the stochastic thermostat-changing behavior. 138 

To optimally control such a community, considering the above factors, we adopted a hierarchical 139 

control structure.  140 

As illustrated in Figure 1, two layers of control are formulated: a community operator layer (COL) 141 

and a building agent layer (BAL). The COL optimally allocates the limited amount of the on-site 142 

PV generation based on the load flexibility provided by each building. The calculated allowable 143 

load for each building is then passed down to the BAL, where each building optimally schedules 144 

its controllable devices (i.e., HVAC, battery, and controllable loads) to achieve its local 145 

optimization goals. Both layers are formulated as MPC-based optimization problems.  146 

 147 

Figure 1 The hierarchical optimal control structure for community operation. 148 

The input of the hierarchical control involves the predicted PV generation data, outdoor air dry-149 

bulb temperature, and solar irradiance. The PV generation data are used by the COL to determine 150 

the optimal allocation among buildings. The temperature and irradiance data are used by the 151 

HVAC models for updating the indoor room temperature predictions. The occupant behavior 152 
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affects the two layers differently. The COL uses building occupancy schedules to decide the 153 

weights of different buildings during the PV allocation (details can be found in [7]). The BAL 154 

considers occupant thermal preference to be the uncertainty in the indoor room temperature 155 

prediction.  156 

2.2 Proposed Workflow  157 

Figure 2 depicts the workflow of this paper. A deterministic optimal load scheduler without the 158 

occupant thermal preference uncertainty is implemented in the hierarchical control structure. 159 

Further, to account for the uncertainties, we propose a chance-constrained controller. It is 160 

developed based on the deterministic controller and involves an alteration of the room temperature 161 

constraints, which accounts for the uncertainties in room temperature prediction errors caused by 162 

the occupants’ thermostat-changing behavior. The Monte Carlo simulation method was adopted 163 

to cover a wide range of simulation results.  164 

 165 

Figure 2 Diagram of the proposed workflow. 166 

Further, to reflect various styles of occupant behavior, three types of occupant thermostat-changing 167 

models were adopted: low, medium, and high, which represent three levels of frequencies of the 168 

thermostat-changing activities. Here, we assume that when the occupant decides to change the 169 

indoor air temperature setpoint according to their preference, the predetermined optimal HVAC 170 

equipment control setting at the current timestep will be overridden. Instead, a new control setting 171 

will be calculated to achieve the occupants’ setpoint at the current timestep. At the next timestep, 172 

the predetermined optimal setting will still be used if the occupant is not changing the setpoint 173 

consecutively.  174 
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Finally, the optimal schedules determined by the chance-constrained controller and the 175 

deterministic controller are tested on a high-fidelity virtual testbed [28] with respect to their 176 

individual performances. KRIs such as the unserved load ratio, the required battery size, and the 177 

unmet thermal preference hours were adopted to quantify the results.  178 

The unserved load ratio in this paper is defined as the relative discrepancy between the served 179 

load 𝑃𝑙𝑜𝑎𝑑
𝑡  and the originally predicted load 𝑃𝑙𝑜𝑎𝑑

𝑡
: 180 

𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑙𝑜𝑎𝑑 𝑟𝑎𝑡𝑖𝑜 =
∑ (𝑃𝑙𝑜𝑎𝑑

𝑡
− 𝑃𝑙𝑜𝑎𝑑

𝑡 )𝑁
𝑡=1

∑ 𝑃𝑙𝑜𝑎𝑑

𝑡
𝑁
𝑡=1

, (1) 

where 𝑁 is the MPC simulation horizon of 48 hours. The required battery size is obtained by 181 

subtracting the minimum battery SOC from the maximum SOC. This gives us a sense of how much 182 

of the battery capacity has been used under different scenarios. Finally, we define the unmet 183 

thermal preference hours metric for the cumulative absolute difference between the actual and the 184 

preferred room temperature over the optimization horizon:  185 

𝑈𝑛𝑚𝑒𝑡 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ℎ𝑜𝑢𝑟𝑠 = ∑ |𝑇𝑟𝑜𝑜𝑚
𝑡 − 𝑇𝑝𝑟𝑒𝑓𝑒𝑟

𝑡 |∆𝑡.
𝑁

𝑡=1
 (2) 

It quantifies how well the controller performs to satisfy the occupants’ thermal preference and has 186 

the unit of ºC·h (degree hours).  187 

3 Models for Controllable Devices 188 

3.1 HVAC Models 189 

This study assumes that heating and cooling is provided by heat pumps and the heat pump energy 190 

consumption represents the HVAC system energy consumption. We adopted linear regression 191 

models for the HVAC system to predict room temperatures at each timestep. To precisely model 192 

the building thermal reactions, two types of parameters that contribute to the heat gain of the 193 

building space are considered. The first type is environmental parameters such as the outdoor air 194 

dry-bulb temperature and solar irradiance. The second type represents the internal heat gain due to 195 

the presence of the occupants and the operation of appliances. We assumed that the simulated 196 

buildings are well sealed and thus the interference from the infiltration can be omitted. Therefore, 197 

the HVAC model updates the indoor room temperature based on the room temperature at the last 198 
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timestep, the abovementioned heat gains, and the heating/cooling provided by the heat pump 199 

system at every timestep. The control variable is the heat pump speed ratio, which ranges from 0 200 

to 1 continuously. The resulting HVAC power is equal to the speed ratio multiplied by the nominal 201 

heat pump power. Additionally, to better account for the effect of building thermal mass, for each 202 

heat gain parameter, two past terms are adopted, respectively [29]. The equations for the HVAC 203 

model are as follows: 204 

𝑇𝑟𝑜𝑜𝑚
𝑡+1 = 𝛽1𝑇𝑟𝑜𝑜𝑚

𝑡 + 𝛽2𝑇𝑟𝑜𝑜𝑚
𝑡−1 + 𝛽3𝑇𝑎𝑚𝑏

𝑡 + 𝛽4𝑇𝑎𝑚𝑏
𝑡−1 + 𝛽5𝑟ℎ𝑣𝑎𝑐

𝑡 + 𝛽6𝑄𝑠𝑜𝑙
𝑡 + 𝛽7𝑄𝑠𝑜𝑙

𝑡−1 + 𝛽8𝑄𝑔𝑎𝑖𝑛
𝑡

+ 𝛽9𝑄𝑔𝑎𝑖𝑛
𝑡−1 , 

(3) 

s.t. 0 ≤ 𝑟ℎ𝑣𝑎𝑐
𝑡 ≤ 1, (4) 

𝑃ℎ𝑣𝑎𝑐
𝑡 = 𝑟ℎ𝑣𝑎𝑐

𝑡 𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚, (5) 

where 𝑇𝑟𝑜𝑜𝑚
𝑡 , 𝑇𝑎𝑚𝑏

𝑡 , 𝑄𝑠𝑜𝑙
𝑡 , and 𝑄𝑔𝑎𝑖𝑛

𝑡  represent the room temperature, ambient dry-bulb temperature, 205 

solar irradiance, and internal heat gain at timestep 𝑡, respectively. The 𝑟ℎ𝑣𝑎𝑐
𝑡  and 𝑃ℎ𝑣𝑎𝑐,𝑛𝑜𝑚 are the 206 

heat pump speed ratio and the nominal HVAC system power. The linear regression coefficients 207 

are represented by 𝛽. For 𝛽5, a negative value means cooling and positive means heating.  208 

In the model, 𝑄𝑔𝑎𝑖𝑛
𝑡  and 𝑄𝑔𝑎𝑖𝑛

𝑡−1  are related to the occupant presence and the operation of the 209 

building appliances. When the building is occupied, 70% of the total heat rate of a person (i.e., 210 

100 W) is dissipated as sensible heat into the space and the rest 30% is latent heat [30]. The heat 211 

gain from appliances is calculated by the power of the appliance multiplied by its heat gain 212 

coefficient, which reflects how much of the consumed electric power is dissipated into the space 213 

as heat. Table A-1 in Appendix A lists the heat gain coefficients adopted from literature [31–33]. 214 

Note that the controllable loads are optimization variables of the scheduling problem, which will 215 

be iteratively calculated at each optimization timestep. Therefore, to speed up the optimization, we 216 

reduced the coupling between the thermal models and the electric demand models. This was done 217 

by calculating the weighted average heat gain coefficients for each building based on the capacity 218 

of each appliance (Table A-1).  219 
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3.2 Load and Battery Models 220 

The building load models in this work are categorized into four types according to their power 221 

flexibility characteristics: sheddable, modulatable, shiftable, and critical (Figure 3). We did the 222 

categorization from the perspective of the building owners during power outages. The sheddable 223 

loads are those that can be disconnected without affecting the occupants’ essential needs. For 224 

instance, the microwave in a bakery is categorized as sheddable during an outage. The modulatable 225 

loads are the systems that have varying power shapes such as an HVAC system with a variable 226 

frequency drive. The shiftable loads are the appliances that have flexible operation schedules such 227 

as washers and dryers. Lastly, the critical loads refer to appliances and systems related to the 228 

occupants’ essential needs. In this work, we consider only loads used for lighting and food 229 

preservation as critical loads, which aligns with the two bottom levels of Maslow’s Hierarchy of 230 

Needs (i.e., physiological and safety needs) [34]. The critical loads account for about 20% to 90% 231 

of the total building loads depending on building type and time of day.  232 

 233 

Figure 3 Power flexibility characteristics of the four load types [35]. 234 

The mathematical formulation of the sheddable load is shown in Equation (6):  235 

𝑃𝑠ℎ𝑒𝑑,𝑗
𝑡 = 𝑢𝑠ℎ𝑒𝑑,𝑗

𝑡 𝑃̂𝑠ℎ𝑒𝑑,𝑗
𝑡 , 𝑗 ∈ {1, … , 𝑁𝑠ℎ𝑒𝑑}, (6) 

where 𝑢𝑠ℎ𝑒𝑑,𝑗
𝑡  is a binary optimization variable, 𝑃̂𝑠ℎ𝑒𝑑,𝑗

𝑡  is the original sheddable load time series 236 

data, and 𝑁𝑠ℎ𝑒𝑑 is the number of sheddable loads in the building. The actual sheddable load after 237 

optimization 𝑃𝑠ℎ𝑒𝑑,𝑗
𝑡  is determined by the ON/OFF status represented by the binary variable. The 238 

modulatable load 𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡  is formulated as a continuous optimization variable, which ranges 239 

between zero and its original power demand 𝑃̂𝑚𝑜𝑑𝑢,𝑗
𝑡 . Equation (7) sets the lower and upper bound 240 

of the modulatable load.  241 

0 ≤ 𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡 ≤ 𝑃̂𝑚𝑜𝑑𝑢,𝑗

𝑡 , 𝑗 ∈ {1, … , 𝑁𝑚𝑜𝑑𝑢}. (7) 
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The shiftable loads are scheduled through scheduling matrices [36]. First, using the power data 242 

[37], we extracted the average cycle time 𝑛𝑠ℎ𝑖𝑓,𝑗 and the average power demand 𝑃𝑠ℎ𝑖𝑓,𝑗,𝑎𝑣𝑔 of each 243 

shiftable load. The starting operation timestep 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠 of each shiftable load is optimized over the 244 

MPC horizon. At the scheduled starting timestep, the binary variable 𝑣𝑠ℎ𝑒𝑑,𝑗
𝑡  equals 1 and is 0 245 

otherwise:  246 

𝑣𝑠ℎ𝑖𝑓,𝑗
𝑡 = {

1, 𝑡 = 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠,

0, 𝑡 ≠ 𝑡𝑠ℎ𝑖𝑓,𝑗,𝑠,
 

∀𝑡 ∈ {1, … , 𝐻 − 𝑛𝑠ℎ𝑖𝑓,𝑗 + 1}, 𝑗 ∈ {1, … , 𝑁𝑠ℎ𝑖𝑓}. 

(8) 

𝐻 is the MPC prediction horizon. Once the starting time of a shiftable load is selected, the power 247 

demand of the load is then fixed at its average power until it finishes its cycle. The appliance must 248 

finish its cycle before the horizon ends (𝑡 ∈ {1, … , 𝐻 − 𝑛𝑠ℎ𝑖𝑓,𝑗 + 1}). Here, we assume that each 249 

shiftable load operates once and only once during each horizon, which is enforced by: 250 

∑ 𝑣𝑠ℎ𝑖𝑓,𝑗
𝑡

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1

𝑡=1

= 1. (9) 

Next, a scheduling matrix 𝑺𝑠ℎ𝑖𝑓,𝑗 of shape 𝐻 × (𝐻 − 𝑛𝑠ℎ𝑖𝑓,𝑗 + 1) is generated for each shiftable 251 

load. The actual power shape of the load, denoted 𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡 , is thus calculated by: 252 

𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡 = 𝑺𝑠ℎ𝑖𝑓,𝑗 × [

𝑣𝑠ℎ𝑖𝑓,𝑗
1

⋮

𝑣
𝑠ℎ𝑖𝑓,𝑗

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1
] × 𝑃𝑠ℎ𝑖𝑓,𝑗,𝑎𝑣𝑔. (10) 

Finally, the actual critical load 𝑃𝑐𝑟𝑖𝑡,𝑗
𝑡  must be exactly equal to the critical power demand 𝑃̂𝑐𝑟𝑖𝑡,𝑗

𝑡 , 253 

as enforced by: 254 

𝑃𝑐𝑟𝑖𝑡,𝑗
𝑡 = 𝑃̂𝑐𝑟𝑖𝑡,𝑗

𝑡 , 𝑗 ∈ {1, … , 𝑁𝑐𝑟𝑖𝑡}. (11) 

Summing up the four types of loads in each building, we obtain the optimization variable 𝑃𝑙𝑜𝑎𝑑
𝑡  as 255 

follows:  256 

𝑃𝑙𝑜𝑎𝑑
𝑡 = ∑ 𝑃𝑠ℎ𝑒𝑑,𝑗

𝑡

𝑁𝑠ℎ𝑒𝑑

𝑗=1

+ ∑ 𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡

𝑁𝑚𝑜𝑑𝑢

𝑗=1

+ ∑ 𝑃𝑠ℎ𝑖𝑓,𝑗
𝑡

𝑁𝑠ℎ𝑖𝑓

𝑗=1

+ ∑ 𝑃𝑐𝑟𝑖𝑡,𝑗
𝑡

𝑁𝑐𝑟𝑖𝑡

𝑗=1

. (12) 
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The linear battery model adopted in this work is represented by Equation (13). The battery state of 257 

charge (SOC) 𝐸𝑏𝑎𝑡
𝑡+1  is predicted based on the SOC of the previous timestep 𝐸𝑏𝑎𝑡

𝑡 , the battery 258 

charging 𝑃𝑐ℎ
𝑡  or discharging power 𝑃𝑑𝑖𝑠

𝑡  at each step, and the battery charging/discharging 259 

efficiencies 𝜂𝑐ℎ  and 𝜂𝑑𝑖𝑠 . The inequality constraints in Equations (14) and (15) enforce the 260 

acceptable limits for the battery charging/discharging power and SOC, where 𝑃𝑏𝑎𝑡 and 𝐸𝑏𝑎𝑡 are 261 

the maximum values for battery power and capacity: 262 

𝐸𝑏𝑎𝑡
𝑡+1 = 𝐸𝑏𝑎𝑡

𝑡 + 𝜂𝑐ℎ𝑃𝑐ℎ
𝑡 ∆𝑡 −

1

𝜂𝑑𝑖𝑠
𝑃𝑑𝑖𝑠

𝑡 ∆𝑡, (13) 

s.t. 0 ≤ 𝑃𝑐ℎ
𝑡 , 𝑃𝑑𝑖𝑠

𝑡 ≤ 𝑃𝑏𝑎𝑡, (14) 

0 ≤ 𝐸𝑏𝑎𝑡
𝑡+1 ≤ 𝐸𝑏𝑎𝑡. (15) 

4 Optimal Load Scheduling 263 

This section first presents the mathematical formulation of the deterministic load scheduler. After 264 

that, we will introduce the formulation of the occupant preference-aware stochastic scheduler 265 

containing three parts: the thermostat-changing model, the uncertainty introduction mechanism, 266 

and the method to address the uncertainty. 267 

4.1 Deterministic Scheduler  268 

As introduced in Section 2.1, the deterministic scheduler adopts a two-layer structure with COL 269 

and BAL. The objective of the COL is to minimize the community-level PV curtailment to 270 

facilitate better use of the limited PV power during the outage. The main constraints are the load 271 

flexibility of each building, building occupancy, and building priority, etc. No detailed building 272 

assets are simulated at the community layer. This ensures that the COL is computationally tractable, 273 

especially when the problem scales up and the number of controllable building assets scales up. 274 

The detailed mathematical formulation of the COL can be found in reference [7]. 275 

The objective of the BAL is to minimize the unserved load ratio of each building within the 276 

allowable load range allocated by the COL. This is achieved through MPC-based optimal 277 

scheduling of the building-owned HVAC system, controllable loads, and battery. The optimization 278 
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is a mixed-integer linear programming problem, because the sheddable and shiftable load models 279 

contain binary variables. Next, the mathematical formulation of the optimization problem is 280 

presented. Note that the formulation applies for every individual building in the community.  281 

The cost function to minimize the unserved load ratio is formulated as: 282 

𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥𝑡}𝑡=1
𝐻 ) = ∑ (𝑃𝑙𝑜𝑎𝑑

𝑡
− 𝑃𝑙𝑜𝑎𝑑

𝑡 )

𝐻

𝑡=1

+ ∑ 𝛾𝑃𝑐ℎ
𝑡

𝐻

𝑡=1

+ ∑ 𝛾′𝑃𝑐𝑢𝑟𝑡
𝑡

𝐻

𝑡=1

, (16) 

𝑚𝑖𝑛
{𝑥𝑡}𝑡=1

𝐻
𝑓𝑐𝑜𝑠𝑡(𝑡, {𝑥𝑡}𝑡=1

𝐻 ) , (17) 

where 𝑃𝑙𝑜𝑎𝑑

𝑡
 is the predicted load upper bound from data. The difference between this upper bound 283 

and the actual operated loads 𝑃𝑙𝑜𝑎𝑑
𝑡  is minimized to achieve a maximum served load to the building. 284 

To avoid simultaneous battery charging and discharging as well as PV curtailment, the objective 285 

function also includes small penalizations of charging 𝛾𝑃𝑐ℎ
𝑡  and curtailment 𝛾′𝑃𝑐𝑢𝑟𝑡

𝑡  [38], where 𝛾 286 

and 𝛾′ are the penalization coefficients. The power balance of each building that must be satisfied 287 

at each timestep is given by: 288 

𝑃𝑝𝑣
𝑡 − 𝑃𝑐𝑢𝑟𝑡

𝑡 = 𝑃𝑐ℎ
𝑡 − 𝑃𝑑𝑖𝑠

𝑡 + 𝑃𝑙𝑜𝑎𝑑
𝑡 + 𝑃ℎ𝑣𝑎𝑐

𝑡 , (18) 

where PV curtailment 𝑃𝑐𝑢𝑟𝑡
𝑡  is limited by how much PV generation 𝑃𝑝𝑣

𝑡  is available: 289 

0 ≤ 𝑃𝑐𝑢𝑟𝑡
𝑡 ≤ 𝑃𝑝𝑣

𝑡 . (19) 

The left-hand side of Equation (18) represents power generation, whereas the right-hand side 290 

represents consumption. The 𝑃𝑐ℎ
𝑡  and 𝑃𝑑𝑖𝑠

𝑡  stand for the battery charging and discharging power as 291 

in Equation (13). The 𝑃𝑙𝑜𝑎𝑑
𝑡  and 𝑃ℎ𝑣𝑎𝑐

𝑡  are the total building loads and the HVAC power calculated 292 

in Equations (12) and (5), respectively. To assure thermal comfort of the indoor environment, a 293 

temperature constraint is given by:  294 

𝑇𝑟𝑜𝑜𝑚 ≤ 𝑇𝑟𝑜𝑜𝑚
𝑡 ≤ 𝑇𝑟𝑜𝑜𝑚, (20) 

where 𝑇𝑟𝑜𝑜𝑚 and 𝑇𝑟𝑜𝑜𝑚 are the lower and upper room temperature bounds implemented as hard 295 

constraints. The optimization variables in each building agent are collected in vector 𝑥𝑡: 296 
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𝑥𝑡 = [
{𝑃𝑐𝑢𝑟𝑡

𝑡 }𝑡=1
𝐻 , {𝑃𝑐ℎ

𝑡 }𝑡=1
𝐻 , {𝑃𝑑𝑖𝑠

𝑡 }𝑡=1
𝐻 , {𝑟ℎ𝑣𝑎𝑐

𝑡 }𝑡=1
𝐻 , {𝑢𝑠ℎ𝑒𝑑,𝑗

𝑡 }
𝑡=1

𝐻
,

{𝑃𝑚𝑜𝑑𝑢,𝑗
𝑡 }

𝑡=1

𝐻
, {𝑣𝑠ℎ𝑖𝑓,𝑗

𝑡 }
𝑡=1

𝐻−𝑛𝑠ℎ𝑖𝑓,𝑗+1
, {𝑇𝑟𝑜𝑜𝑚

𝑡 }𝑡=1
𝐻 , {𝐸𝑏𝑎𝑡

𝑡 } 𝑡=1
𝐻

]. (21) 

4.2 Stochastic Preference-aware Scheduler 297 

To address the uncertainties of occupant thermal preference in the scheduling problem of resilient 298 

communities, this section introduces the stochastic preference-aware scheduler. First, we discuss 299 

the modeling of the occupant behavior uncertainties as a probability function. Then we show the 300 

mechanism by which this uncertainty might affect the optimal control of the HVAC system. After 301 

that, we propose using the chance-constraint method to address the uncertainty. 302 

4.2.1 Stochastic Thermostat-Changing Model 303 

The stochastic occupant thermostat-changing model adopted in this paper was proposed by Gunay 304 

et al. [39]. Through continuous observation of the occupants’ thermostat keypress actions in 305 

private office spaces, the relationship between the thermostat-changing behavior and the 306 

concurrent occupancy, temperature, and relative humidity was analyzed. It was noted that the 307 

frequency of thermostat interactions (i.e., increasing or decreasing) can be approximated as a 308 

univariate logistic regression model with the indoor temperature as the independent predictor 309 

variable. Though the original data set was obtained from two office buildings, Gunay et al. 310 

generalized the study to understand occupants’ thermostat user behavior and temperature 311 

preferences. Given the universality of their work, we have adapted their models based on our use 312 

cases. Note that occupants might have varied (e.g., higher) tolerance of indoor temperature during 313 

an emergency situation. The exact thresholds need further experimental study and validation, 314 

which is out of the scope of this work. 315 

The thermostat-changing behavior models determine whether the occupants will change the 316 

setpoint temperature based on the concurrent indoor air temperature. The probability of increasing 317 

and decreasing the temperature setpoint is predicted with a logistic regression model: 318 

𝑝 =
1

1 + 𝑒−(𝑎+𝑏𝑇𝑟𝑜𝑜𝑚)
, (22) 

where 𝑝 is the probability of the changing action, 𝑇𝑟𝑜𝑜𝑚 is the indoor room temperature, and 𝑎 and 319 

𝑏 are coefficients. To investigate different uncertainty levels, we proposed three different active 320 
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levels by revising the coefficients of the model in Equation (22). As shown in Table 1, the low 321 

active level adopts the original coefficients in [39]. Then, we proposed the medium and high active 322 

levels to represent various occupant thermal preference styles. The standard errors and p-values of 323 

the low active level coefficients are also provided in the table. As for the medium and high levels, 324 

we do not have measurement data for the statistical analysis since we adapted the coefficients from 325 

the original reference [39]. 326 

Table 1 Coefficients in different active levels of the occupant thermostat-changing behavior 327 

model. 328 

Active Level 

Coefficients 

Increasing Decreasing 

a b a b 

Low [39] -0.179 -0.285 -17.467 0.496 

Medium 7.821 -0.485 -20.667 0.696 

High 15.821 -0.685 -23.867 0.896 

Standard Error 1.047 0.048 0.684 0.028 

p-value 0.864 0.000 0.000 0.000 

 329 

Note that the adaptation of the original logistic regression models was made under the following 330 

assumptions to ensure the adapted models remained realistic. For the setpoint increasing scenario, 331 

the slope coefficient of 𝑏 is varied linearly to reflect a higher frequency of the changing behavior. 332 

The intercept coefficient 𝑎 is then calculated to make sure that all active levels have the same value 333 

of probability at the temperature of 40ºC. For the setpoint decreasing scenario, a similar approach 334 

is taken to make sure the same value of probability at 16ºC is shared by all active levels. At each 335 

thermostat interaction, we assume that 1ºC of setpoint change would take place. Figure 4 depicts 336 

the probabilities of the three active levels. Note that this figure contains a wider temperature range 337 

than 16ºC ~ 40ºC to show a more comprehensive performance of the behavior models. 338 

 339 
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 340 

Figure 4 Probability of different thermostat-changing behavior. 341 

Once the probability of the thermostat-changing behavior is determined using the above models, 342 

the increasing or decreasing action is determined by comparing the probabilities with a randomly 343 

generated number. At each optimization timestep, a random number between 0 and 1 is generated. 344 

If the number is larger than 1 − Pr (𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒), the action will be to increase. On the contrary, if 345 

it is smaller than Pr (𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒), the action will be to decrease. Because the sum of the increase 346 

and decrease probabilities is smaller than 1 in our case, this algorithm assures at most one action 347 

will be taken at each timestep. 348 

4.2.2 Introducing Occupant Behavior Uncertainties in Scheduling 349 

To introduce the occupant thermostat-changing uncertainties to the load scheduling problem, a 350 

stochastic simulation model representing the behavior needs to be incorporated into the 351 

optimization. Figure 5 shows the control signal flow for the typical indoor air temperature control, 352 

which affects the HVAC system operational status and its power consumption. The occupant sets 353 

the temperature setpoint according to his/her preference through the thermostat. Behind the 354 

thermostat, a proportional integral derivative (PID) controller decides the next heat pump speed to 355 

offset the difference between the measured room temperature and the setpoint. This heat pump 356 

speed signal is then fed into the heat pump system to provide cooling for the conditioned space. 357 
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Due to the presence of the dynamic environmental and behavioral disturbances, this process will 358 

need to be repeated until the measured room temperature reaches the setpoint.  359 

 360 

Figure 5 Diagram showing the introduction of occupant thermostat-changing behavior to the 361 

optimization. 362 

However, in the optimal control mechanism, the optimal scheduler takes over the control of the 363 

heat pump speed from the PID controller. As a result, the occupants’ preference has thus been 364 

“disabled” to allow an optimal control determined by the scheduler. To mimic the overriding of 365 

the room temperature setpoint by the occupants, the following algorithm was implemented in the 366 

MPC problem and the pseudo code is shown below. Before each round of the optimization starts 367 

(Steps 1–2), if the occupant decided to change the setpoint (Step 3), the heat pump speed for the 368 

current timestep should be calculated to reach the setpoint instead of achieving the optimization 369 

objective (Steps 4–7). Otherwise, the optimization runs normally because no overriding happens 370 

(Step 7). After each optimization timestep, the flag variables indicating the thermostat-changing 371 

actions need to be updated according to the concurrent room temperature (Step 8). It should be 372 

noted that in the optimization, no PID controller has been implemented, so we assumed that 373 

𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑠𝑒𝑡

𝑡  and the setpoint changes were directly added to the room temperature 𝑇𝑟𝑜𝑜𝑚
𝑡 .  374 

Step 1. Start 

Step 2. Initialization of flag variables: 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒, 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒; 

Step 3. If 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑡𝑟𝑢𝑒 or 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑡𝑟𝑢𝑒: 

Step 4 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑟𝑜𝑜𝑚

𝑡−1 + 1 or 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑟𝑜𝑜𝑚

𝑡−1 − 1; 

Step 5 Calculate the corresponding 𝑟ℎ𝑣𝑎𝑐
𝑡 ; 

Step 6 Disable 𝑟ℎ𝑣𝑎𝑐
𝑡  from the optimization variables; 

Step 7. Run MPC for timestep 𝑡; 
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Step 8. Update flag variables (i.e., 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 and 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒) according to 𝑇𝑟𝑜𝑜𝑚
𝑡 ; 

Step 9. Repeat Steps 3–8 until the end of the MPC horizon of 48 hours; 

Step 10. End 

4.2.3 Chance-Constraint Method 375 

As mentioned in Section 4.2.1, the uncertainties in the occupants’ thermostat-changing behavior 376 

are a probability function. In the scheduling optimization problem, the constraint directly affected 377 

by the occupants’ thermostat-changing behavior is the room temperature bounds. The uncertainties 378 

related to the occupants’ adjusting the thermostat could lead to the violation of the temperature 379 

bounds during the implementation of the developed control strategies. Furthermore, this could lead 380 

to other control-related performances being affected, including higher building load unserved ratio 381 

and larger required battery size. To address this, we adopted the chance-constraint method.  382 

By definition, the chance constraint allows the violation of a certain constraint with a small 383 

probability, which thus presents a systematic trade-off between control performance and 384 

probability of constraint violations [40]. It can be expressed in general by the following equation: 385 

𝑃𝑟(𝑔(𝑥, 𝜉) ≤ 0) ≥ 1 − 𝜖, (23) 

where 𝑔(𝑥, 𝜉) ≤ 0  is the inequivalent constraint and 𝜖  is the maximum violation probability. 386 

Given the uncertainties in the occupants’ thermostat-changing behavior, we assume that the 387 

temperature bounds can be satisfied with a probability of (1 − 𝜖𝑇). For the lower temperature 388 

bounds, the chance constraint can thus be written as: 389 

𝑃𝑟(𝑇𝑟𝑜𝑜𝑚 ≤ 𝑇𝑟𝑜𝑜𝑚
𝑡+1 ) ≥ 1 − 𝜖𝑇 . (24) 

Then, we rewrite it as: 390 

𝑃𝑟(𝜒𝑇
𝑡+1 ≤ 0) ≥ 1 − 𝜖𝑇 , (25) 

where 𝜒𝑇
𝑡+1 = 𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑟𝑜𝑜𝑚

𝑡+1 . Let the indoor temperature be rewritten in terms of the prediction 391 

error: 𝑇𝑟𝑜𝑜𝑚
𝑡 = 𝑇𝑟𝑜𝑜𝑚,𝑓

𝑡 + 𝑇𝑟𝑜𝑜𝑚,𝑒
𝑡  where 𝑇𝑟𝑜𝑜𝑚,𝑓

𝑡  is the predicted indoor room temperature and 392 

𝑇𝑟𝑜𝑜𝑚,𝑒
𝑡  is the error caused by uncertainties. Similarly, 𝑇𝑟𝑜𝑜𝑚

𝑡−1 = 𝑇𝑟𝑜𝑜𝑚,𝑓
𝑡−1 + 𝑇𝑟𝑜𝑜𝑚,𝑒

𝑡−1 . For both 393 

timesteps, the room temperature distribution error follows the same distribution. The hypothetical 394 
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error distributions can be in different forms and here we assume the distribution to be normal. 395 

Hence, it can be represented by: 396 

𝑇𝑟𝑜𝑜𝑚,𝑒
𝑡,𝑡−1 ~𝒩(𝜇𝑇

𝑡 , (𝜎𝑇
𝑡 )2). (26) 

Therefore, 𝜒𝑇
𝑡+1 is also normally distributed with the following mean 𝜇𝑡 and standard deviation 𝜎𝑡: 397 

𝜇𝑡 = 𝑇𝑟𝑜𝑜𝑚 − 𝛽1(𝑇𝑟𝑜𝑜𝑚
𝑡 + 𝜇𝑇

𝑡 ) − 𝛽2(𝑇𝑟𝑜𝑜𝑚
𝑡−1 + 𝜇𝑇

𝑡 ) − 𝛽3𝑇𝑎𝑚𝑏
𝑡 − 𝛽4𝑇𝑎𝑚𝑏

𝑡−1 − 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡 − 𝛽6𝑄𝑠𝑜𝑙

𝑡

− 𝛽7𝑄𝑠𝑜𝑙
𝑡−1 − 𝛽8𝑄𝑔𝑎𝑖𝑛

𝑡 − 𝛽9𝑄𝑔𝑎𝑖𝑛
𝑡−1 , 

(27) 

𝜎𝑡 = √(𝛽1𝜎𝑇
𝑡 )2 + (𝛽2𝜎𝑇

𝑡 )2. (28) 

The chance constraint can thus be reformulated as: 398 

𝑃𝑟(𝜒𝑇
𝑡+1 ≤ 0) = Φ (

0 − 𝜇𝑡

𝜎𝑡
) ≥ 1 − 𝜖𝑇 , (29) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal distribution 399 

𝒩(0, 1). By taking the inverse CDF of both sides, we can get: 400 

0 − 𝜇𝑡

𝜎𝑡
≥ Φ−1(1 − 𝜖𝑇). (30) 

Rearrange the above equation and substitute 𝜇𝑡 and 𝜎𝑡  with Equations (27) and (28). Finally, we 401 

obtain the chance constraint for ensuring the indoor temperature will not fall below the lower 402 

bound of 𝑇𝑟𝑜𝑜𝑚 with the probability of (1 − 𝜖𝑇) as follows: 403 

𝛽1(𝑇𝑟𝑜𝑜𝑚
𝑡 + 𝜇𝑇

𝑡 ) + 𝛽2(𝑇𝑟𝑜𝑜𝑚
𝑡−1 + 𝜇𝑇

𝑡 ) + 𝛽3𝑇𝑎𝑚𝑏
𝑡 + 𝛽4𝑇𝑎𝑚𝑏

𝑡−1 + 𝛽5𝑟ℎ𝑣𝑎𝑐
𝑡 + 𝛽6𝑄𝑠𝑜𝑙

𝑡 + 𝛽7𝑄𝑠𝑜𝑙
𝑡−1

+ 𝛽8𝑄𝑔𝑎𝑖𝑛
𝑡 + 𝛽9𝑄𝑔𝑎𝑖𝑛

𝑡−1 − 𝑇𝑟𝑜𝑜𝑚 ≥ Φ−1(1 − 𝜖𝑇)√(𝛽1𝜎𝑇
𝑡 )2 + (𝛽2𝜎𝑇

𝑡 )2. 
(31) 

Substituting Equation (3) into (31) and rearranging, we have: 404 

𝑇𝑟𝑜𝑜𝑚
𝑡+1 − 𝑇𝑟𝑜𝑜𝑚 ≥ Φ−1(1 − 𝜖𝑇)√(𝛽1𝜎𝑇

𝑡 )2 + (𝛽2𝜎𝑇
𝑡 )2 − (𝛽1𝜇𝑇

𝑡 + 𝛽2𝜇𝑇
𝑡 ). (32) 

Similarly, we have Equation (33) for the upper bound,  405 

𝑃𝑟(𝑇𝑟𝑜𝑜𝑚 ≥ 𝑇𝑟𝑜𝑜𝑚
𝑡+1 ) ≥ 1 − 𝜖𝑇 . 

(33) 
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Taking a similar derivation process as that in Equations (24) to (32), we can obtain the chance 406 

constraint for the temperature upper bound: 407 

𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑟𝑜𝑜𝑚
𝑡+1 ≥ Φ−1(1 − 𝜖𝑇)√(𝛽1𝜎𝑇

𝑡 )2 + (𝛽2𝜎𝑇
𝑡 )2 + (𝛽1𝜇𝑇

𝑡 + 𝛽2𝜇𝑇
𝑡 ). (34) 

The updated inequivalent constraints indicate that the temperature bounds for the optimization 408 

should be narrower than the original temperature bounds to account for the setpoint behavioral 409 

uncertainty, which is consistent with the expectations. Note that because the uncertainty-dealing 410 

method is focused on the temperature constraints, one possible limitation is that the above method 411 

might have limited effect on the controller design for buildings that have larger thermal masses, 412 

because the building temperature is insensitive to temperature constraints. More discussion of this 413 

point follows in Section 5.3.1.  414 

5 Case Study 415 

5.1 Studied Community  416 

The case study community is a net-zero energy community located in Anna Maria Island, Florida, 417 

USA, which is a cooling dominated region. The community buildings are installed with both roof-418 

top PV panels and solar carports, which harvest about 85 MWh annually for the whole community. 419 

A centralized ground source heat pump system provides the HVAC needs of the whole community 420 

with high efficiency. Other sustainable features include well-insulated building envelopes, solar 421 

thermal water heating, and rainwater recycling. This community achieved net-zero energy in the 422 

year of 2014. In the community, there are various building types such as residential, small office, 423 

gift shop, etc. We would like to cover both residential and commercial buildings in the case study. 424 

So, we selected one residential and two small commercial buildings based on the measurement 425 

data quality. More specifically, the selected three buildings consist of a residential building (area: 426 

93.8 m2), an ice cream shop (area: 160.5 m2), and a bakery (area: 410 m2). The building layout of 427 

the community can be found in reference [28]. 428 

For the given community, a virtual testbed based on the object-oriented modeling language 429 

Modelica [41] was built and validated [42]. In the testbed, the Typical Meteorological Year 3 data 430 

for a nearby city, Tampa, was adopted for this case study. The building thermal models are 431 

resistance-capacitance (RC) network models. For the optimal control in this work, the HVAC 432 
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models were trained using one month (i.e., August) of the simulation data exported from the 433 

testbed. Table 2 lists the coefficients for the linear regression HVAC models, the Root Mean 434 

Square Error (RMSE) of the models, as well as the corresponding nominal heat pump power. The 435 

N/A in the table represents a coefficient that is too small and thus has been neglected in the model. 436 

Three effective decimal places are provided.  437 

Table 2 Coefficients and nominal power of the HVAC models. 438 

 Residential 
Ice Cream 

Shop 
Bakery 

Coefficients 

𝑇𝑟𝑜𝑜𝑚
𝑡  1.429 0.502 0.977 

𝑇𝑟𝑜𝑜𝑚
𝑡−1  -0.432 0.498 0.0213 

𝑇𝑎𝑚𝑏
𝑡  0.0263 0.000295 0.00405 

𝑇𝑎𝑚𝑏
𝑡−1  -0.0232 -0.000193 -0.00196 

𝑟ℎ𝑣𝑎𝑐
𝑡  -0.210 -0.0114 -0.178 

𝑄𝑠𝑜𝑙
𝑡  0.0151 0.0000345 0.0107 

𝑄𝑠𝑜𝑙
𝑡−1 -0.00302 0.000181 -0.00621 

𝑄𝑔𝑎𝑖𝑛
𝑡  0.00852 N/A N/A 

𝑄𝑔𝑎𝑖𝑛
𝑡−1  N/A N/A 0.0140 

RMSE [℃] 0.160 0.0205 0.114 

Nominal Power [kW] 2.140 2.830 3.770 

 439 

Additionally, Table 3 lists the load categorization for the studied buildings following the principles 440 

proposed in Section 3.2. A complete list of the building load capacities and their heat gains can be 441 

found in Appendix A. 442 

Table 3 Building loads categorized into four types. 443 

 Residential Ice Cream Shop Bakery 

Sheddable Computer 

Coffee maker, soda 

dispenser, outdoor 

ice storage 

Microwave 

Modulatable HVAC HVAC 
Mixer, unspecific room 

plug loads, HVAC 
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 Residential Ice Cream Shop Bakery 

Shiftable 
Range, washer, 

dryer 
None 

Range, oven, 

dishwasher 

Critical Lights, refrigerator 
Lights, cooler, 

display case 

Lights, cooler, display 

case 

 444 

We designed three uncertainty levels (i.e., low, medium, high) as in Table 1 to evaluate the 445 

deterministic and preference-aware schedulers in this paper. They are compared to the baseline 446 

scenario, where the deterministic scheduler is applied without occupant behavior uncertainties. 447 

The following results and discussion are all based on these scenarios. All scenarios were run in the 448 

three buildings for 48 hours with a timestep of 1 hour in the islanded mode.  449 

5.2 Settings of Chance-Constrained Controllers for Different Buildings 450 

The preference-aware schedulers use chance-constrained controllers, whose settings depend on 451 

individual building properties and uncertainty levels. Following the method proposed in Section 452 

4.2.3, this section provides the details of the chance-constrained controller settings for three 453 

individual buildings in the case study, which is based on the control outcome of the deterministic 454 

schedulers under three uncertainty levels.  455 

Considering the occupant-preference-driven actions as the source of “prediction errors” for the 456 

room temperature, we extracted the distributions of the room temperature prediction errors. The 457 

Monte Carlo simulation method [43] was adopted, where 100 repeated simulations were run using 458 

the deterministic scheduler with three uncertainty levels. We used the room temperature of the 459 

deterministic baseline scenario as the benchmark to calculate the errors caused by the occupant 460 

setpoint-changing behavior. To describe the room temperature errors, three hypothetical 461 

distributions are proposed (i.e., fit distribution in Table 4). The normal distribution is mentioned 462 

in the derivation in Section 4.2.3. The half-normal distribution is a fold of a normal distribution at 463 

its mean. For the residential building medium uncertainty level, a half-normal distribution was 464 

adopted. This can be attributed to the fact that almost no temperature decrease action was observed 465 

and thus the errors were all above zero. Constants were used for the residential building and the 466 

bakery under the low uncertainty level because the frequency of the setpoint-changing is too low 467 

(nearly zero) to follow any distributions.  468 
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Chi-square goodness of fit tests [44] at a rejection level of 1% were conducted to evaluate whether 469 

the proposed hypothetical distributions fit well. The types of fitting distributions, p-values of the 470 

tests, and the distribution parameters are reported in Table 4. In the table, µ is the mean and σ is 471 

the standard deviation of the normal/half-normal distribution. The null hypothesis here is that the 472 

room temperature prediction error follows the hypothetical distribution. The p-value is the 473 

evidence against this null hypothesis. Since all p-values are greater than 99%, all error distributions 474 

failed to reject the hypothesis at the level of 1%. This means they all follow the corresponding 475 

hypothetical distribution.  476 

Table 4 Chi-square goodness of fit test p-values and normal distribution parameters. 477 

Building Uncertainty Fit Distribution p-value µ [ºC] σ [ºC] 

Residential 

Low Constant 1.0 -6.45E-05 N/A 

Medium Half-normal 0.999 -3.57E-01 4.35E-01 

High Normal 0.999 1.56E+00 8.17E-01 

Ice Cream Shop 

Low Normal 0.999 -3.48E-03 7.86E-03 

Medium Normal 0.999 -4.45E-03 8.59E-03 

High Normal 0.999 1.60E-02 1.59E-02 

Bakery 

Low Constant 1.0 -3.42E-03 N/A 

Medium Normal 0.999 3.01E-02 1.05E-01 

High Normal 0.999 5.33E-01 4.65E-01 

The frequency histogram and probability density functions (PDFs) of each building under various 478 

uncertainty levels are plotted in Figure 6. In the figure, it can be seen that the higher the uncertainty, 479 

the wider the room temperature range. This is because in scenarios with a higher uncertainty, 480 

occupants change the thermostat more frequently, which expands the possible temperature ranges. 481 

We also noticed that the temperature range in the ice cream shop is relatively concentrated 482 

compared to the other two buildings. This can be attributed to the large thermal mass of the 483 

building.  484 
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 485 

Figure 6 Room temperature prediction error PDFs obtained from the Monte Carlo simulations. 486 

For the scenario where the temperature prediction error follows the half-normal distribution, we 487 

applied the chance constraint only to the upper bound because only increasing actions happen in 488 

this scenario. For the two scenarios where the room temperature error is estimated to be a constant, 489 

we adopted the original temperature bounds of [20ºC, 25ºC] because the estimated errors in both 490 

scenarios are smaller than 0.01ºC. We choose the 𝜖𝑇 = 1%  to ensure a 99% probability of 491 

abidance of the temperature constraints (Equation (24)). Table 5 lists the updated room 492 

temperature lower and upper bounds for each building under different scenarios.  493 

Table 5 Room temperature bounds for chance-constrained optimizations. 494 

Building Uncertainty 𝑻𝒓𝒐𝒐𝒎 [ºC] 𝑻𝒓𝒐𝒐𝒎 [ºC] 

Residential 

Low 20.000 25.000 

Medium 20.000 24.236 

High 20.547 21.343 

Ice Cream 

Shop 

Low 20.024 24.983 

Medium 20.027 24.982 

High 20.025 24.943 

Bakery 

Low 20.000 25.000 

Medium 20.240 24.700 

High 20.664 23.273 

 495 
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5.3 Results and Discussions 496 

This section first quantifies the impact of introducing occupant behavior uncertainties to the 497 

optimal scheduling problem. Then, the deterministic and chance-constrained controllers are tested 498 

on the community virtual testbed. Their control performance in terms of the unserved load ratio, 499 

the required battery size, and the unmet thermal preference hours are then compared. 500 

5.3.1 Impact of Uncertainty 501 

Figures 7 to 9 depict the occupant thermal preference and the corresponding room temperatures. 502 

In the figures, the upper plots show the simulated stochastic thermostat-changing actions at 503 

different uncertainty levels, where increase means a setpoint increase action, and vice versa. The 504 

lower plots show the resulting room temperatures with dashed lines.  505 

The results of the low uncertainty scenario overlap with that of the baseline scenario (i.e., the 506 

deterministic scheduler without uncertainty) mainly due to the low probability of setpoint-507 

changing actions in this scenario. With the increase in the probability, we see more frequent 508 

setpoint-changing actions in all three buildings. Further, the increase action happens more 509 

frequently than the decrease action. This is because between the temperature range of 20ºC and 510 

24ºC, the probability of increase is much higher than that of decrease (see Figure 4). This also 511 

implies that the occupants’ temperature preference is closer to 24ºC than 20ºC. Additionally, for 512 

the residential building and the bakery, the temperature difference between scenarios is more 513 

noticeable than for the ice cream shop; this is attributable to the different building thermal masses 514 

of the three buildings. 515 
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 516 

Figure 7 Residential building occupant thermostat changing actions (upper) and resulting room 517 

temperatures (lower) under three levels of uncertainty. 518 

 519 

Figure 8 Ice cream shop occupant thermostat changing actions (upper) and resulting room 520 

temperatures (lower) under three levels of uncertainty. 521 
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 522 

Figure 9 Bakery occupant thermostat changing actions (upper) and resulting room temperatures 523 

(lower) under three levels of uncertainty. 524 

Table 6 lists the values of the KRIs in correspondence with Figures 7 to 9. The HVAC energy and 525 

average room temperature over the optimization horizon are also provided to facilitate the analysis 526 

of the results.  527 

Table 6 Key resilience indicators for studied buildings under different uncertainty levels. 528 

Building Scenario Unserved Load Ratio Battery Size [kWh] 
HVAC Energy 

[kWh] 

Mean Room 

Temperature [ºC] 

Residential 

Baseline 0.0744 47.686 32.139 20.185 

Low 0.0744 47.686 32.139 20.185 

Medium 0.0744 47.168 32.099 20.271 

High 0.0744 38.541 21.400 21.468 

Ice Cream Shop 

Baseline 0.0215 99.139 32.703 21.006 

Low 0.0215 99.139 32.703 21.006 

Medium 0.0215 99.139 32.703 21.006 

High 0.0215 93.166 10.063 21.033 

Bakery 

Baseline 0.0247 80.007 35.144 21.579 

Low 0.0247 80.007 35.144 21.579 

Medium 0.0247 73.496 27.604 21.766 

High 0.0247 76.801 11.310 21.973 

 529 
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From the table, we see that the unserved load ratio remains the same across all scenarios for each 530 

building. This can be attributed to the fact that in the controller design phase, the optimization 531 

objective is set to minimize the unserved load ratio. Hence, the unserved load ratios for each 532 

building are already minimal and are not affected by the occupants’ thermostat-overriding 533 

behavior uncertainties. Instead, the battery-charging/discharging behavior is affected, as reflected 534 

by the different required battery sizes in the table. Note that the unserved load ratios are minimal, 535 

but not zero, because of our assumption that each shiftable load operates once and only once per 536 

day. 537 

For the rest of the metrics, note that the battery size, HVAC energy, and the average room 538 

temperature remain the same for the baseline and low uncertainty scenarios in all buildings. This 539 

is because no setpoint-changing actions happened due to the relatively low probabilities, as shown 540 

in the figures above. As for the medium uncertainty scenarios, both the residential building and 541 

the bakery show higher room temperatures and lower HVAC energy while the ice cream shop still 542 

has the same results as the baseline, given its large thermal mass. 543 

In terms of the high uncertainty scenarios, due to the prominent increase in room temperatures, we 544 

noticed more HVAC energy savings in all buildings. Note that though the average room 545 

temperature increase is insignificant, the HVAC energy savings is large due to the cumulative 546 

effect over the many hours of setpoint increase. Overall, we see a positive correlation between the 547 

HVAC energy and the required battery size. When the PV generation and the other building loads 548 

remain the same, the more HVAC energy, the larger required battery size. However, one opposite 549 

case was noted in the bakery high uncertainty scenario where the required battery size is slightly 550 

larger in the high uncertainty scenario than in the medium uncertainty scenario. This was caused 551 

by a setpoint decrease action at hour 28, which resulted in a battery discharging during the night 552 

and thus a smaller minimum SOC of the battery.  553 

To summarize, occupant thermostat-changing behavior uncertainty needs to be considered when 554 

designing optimal schedulers for resilient buildings because it affects the indoor room temperature, 555 

the HVAC power, and thus the sizing of batteries. For the whole community, when considering 556 

the highest occupant behavior uncertainty, the consumed HVAC energy can be 57.2% less and the 557 

battery 8.08% smaller. Whereas the aforementioned impact depends on the uncertainty level (i.e., 558 

how frequently the occupants change the setpoint), heating or cooling season, and the occupants’ 559 
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actual preference for the indoor room temperature compared to the room temperature designed by 560 

the scheduler. In our case, a preferred higher indoor room temperature saves HVAC energy. 561 

During the heating season, the observations could be the reversed.  562 

5.3.2 Controller Performance 563 

To further evaluate the performance of the chance-constrained controller in comparison with the 564 

deterministic controller, tests were run on the virtual testbed [28] in a stochastic manner. In each 565 

of the studied buildings, both the deterministic controller and the chance-constrained controller 566 

were tested for two days (i.e., August 4 and 5) with the three levels of uncertainties. The testing 567 

method is similar to the method proposed in Section 4.2.2. Additionally, the precalculated optimal 568 

battery charging/discharging, as well as the optimized loads, are also implemented in the testbed. 569 

One hundred repeated Monte Carlo simulations were run for each scenario to better observe the 570 

controller performance. The KRIs of the unserved load ratio, the required battery size, and the 571 

unmet thermal preference hours are adopted for the performance evaluation.  572 

The upper plot of Figure 10 depicts the predetermined optimal schedules of the heat pump speed 573 

ratio as the inputs of the test. The lower plot then shows the corresponding room temperatures 574 

predicted by the linear regression models in the optimization. The data for the residential building 575 

is adopted here for the analysis. The plots for the ice cream shop and the bakery can be found in 576 

Appendix A. From the figure, we see that the scheduled speed ratios in the low and medium 577 

uncertainty scenarios overlap with that of the deterministic scheduler. Whereas the high 578 

uncertainty scenario tends to have lower speed ratios over the whole optimization horizon. This 579 

can be attributed to the controller settings shown in Table 5, where the temperature bounds set in 580 

the low and medium uncertainty scenarios are closer to the original bounds of [20ºC–25ºC]. Hence, 581 

the temperature constraints are not binding in these two scenarios. However, in the high 582 

uncertainty scenario, the temperature constraint is binding, which leads to the speed ratio 583 

reductions. As a result, a higher room temperature can be seen in the high uncertainty scenario.   584 
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 585 

Figure 10 Optimal schedules of the heat pump speed ratio and predicted room temperatures by 586 

various schedulers (residential building). 587 

Figures 11 to 13 depict the room temperature boxplots as the controller testing outputs. The lower 588 

and upper borders of the boxes represent the 25th and 75th percentiles of the data, respectively. 589 

The longer the box, the more scattered the room temperature. The lines inside the boxes represent 590 

the median values. The lines beyond the boxes represent the minimum and maximum values except 591 

for outliers, which are not shown in these figures. Note in the figures that the temperatures first 592 

concentrate together (shown as black lines) and then spread out (shown as boxes). This is because 593 

at the beginning of the simulations, no overriding behavior of the setpoints happens and the heat 594 

pump operates following the scheduled speed ratio. Once the overriding happens at a certain 595 

timestep in some simulations, the room temperature trends start to deviate and become boxes. The 596 

occupant-preferred temperature lines are also shown as orange lines in these figures as a reference; 597 

they are average setpoints adjusted by the occupants in all the Monte Carlo tests. 598 
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 599 

Figure 11 Residential building room temperature boxplots for control testing results. 600 

 601 

Figure 12 Ice cream shop room temperature boxplots for control testing results. 602 
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 603 

Figure 13 Bakery room temperature boxplots for control testing results. 604 

In the figures, we see a general trend of narrower room temperature ranges from the low 605 

uncertainty scenarios to high uncertainty scenarios. This is due to the introduction of the occupant 606 

setpoint-overriding mechanism, which tends to moderate the extreme room temperatures. Also, 607 

there is a plant-model mismatch, which describes the parametric uncertainty of modeling that 608 

originates from neglected dynamics of the plant [25]. In our case, the mismatch exists as the 609 

simulated room temperatures in the testbed are slightly higher than those predicted by the reduced-610 

order linear HVAC models. This is understandable because the physics-based testbed has a much 611 

higher fidelity and simulates the non-linearity of the real mechanical systems.  612 

Because the difference in the room temperature between the two controllers is not depicted in these 613 

figures, Table 7 and Table 8 provide further quantitative evaluations of the room temperatures 614 

along with other controller performance. Additionally, note that the optimal schedules of some 615 

scenarios remain the same because of the unbinding temperature constraints, which led to the same 616 

testing outputs. Here we only discuss the scenarios that have different inputs and outputs. A full 617 

list of all testing results is available in Table A-2. 618 

Table 7 Comparison of controller performance in the residential building high uncertainty 619 

scenario. 620 
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Controller 

Unmet Thermal 

Preference Hours 

[ºC·h] 

Mean Room 

Temperature [ºC] 

Unserved 

Load Ratio 

Required 

Battery Size 

[kWh] 

Deterministic 48.91 23.75 0.074 47.69 

Chance-

constrained 
46.42 23.87 0.074 44.12 

 621 

In Table 7, we see a larger value of unmet thermal preference hours in the deterministic controller 622 

than the chance-constrained one. This can be attributed to the higher room temperatures regulated 623 

by the chance constraints to better satisfy the occupants’ thermal preferences. Again, the same 624 

unserved load ratio is observed in both controllers because it is already minimal, which is enforced 625 

by the objective function. In terms of the battery size, the chance-constrained controller shows a 626 

smaller required battery size than the deterministic controller. This results from the fact that a 627 

higher room temperature has led to less consumed HVAC energy in the chance-constrained 628 

scenario. Thus, less discharging from the battery was happening, which led to a smaller required 629 

battery size. For the bakery results shown in Table 8, the same trends for the battery size and the 630 

unserved load ratio as the residential building can be observed under each uncertainty level. 631 

Namely, smaller batteries and the same unserved load ratios. 632 

Table 8 Comparison of controller performances in the bakery medium and high uncertainty 633 

scenarios. 634 

Uncertainty Controller 

Unmet Thermal 

Preference 

Hours [ºC·h] 

Mean Room 

Temperature 

[ºC] 

Unserved 

Load Ratio 

Required 

Battery Size 

[kWh] 

Medium 

Deterministic 88.80 24.27 0.025 80.01 

Chance-

constrained 
91.28 24.50 0.025 76.89 

High 

Deterministic 102.81 23.65 0.025 80.01 

Chance-

constrained 
101.61 23.89 0.025 76.89 

 635 
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As for the unmet thermal preference hours, different trends are witnessed in the medium and high 636 

uncertainty levels. In the medium level, the deterministic controller shows fewer unmet preference 637 

hours than the chance-constrained controller. Whereas in the high uncertainty level, an opposite 638 

trend is seen. This is reasonable as we see a generally higher mean room temperature regulated by 639 

the chance-constrained controller under different uncertainty levels. However, in the medium 640 

scenario, a lower preference temperature line was obtained from the Monte Carlo testing, which is 641 

closer to the actual room temperatures of the deterministic controller. When the preference 642 

temperature rises in the high uncertainty scenario, the chance-constrained controller outperforms 643 

the deterministic controller with a higher actual room temperature and thus smaller unmet thermal 644 

preference hours. 645 

When we compare different uncertainty levels in the bakery, we see that the mean room 646 

temperature decreases with the increase in uncertainty. This is because the lower temperature 647 

upper bounds shown in Table 5 have regulated the room temperature to sink when the uncertainty 648 

gets higher. Additionally, as seen in Figure 4, in the temperature range of 20ºC to 24ºC, the 649 

probability of increasing the temperature setpoint is much higher than that of decreasing it While 650 

above 24ºC, the probability to increase and to decrease is almost the same. This has caused the 651 

room temperatures to end up around 24ºC in the high uncertainty scenarios for all buildings (Table 652 

A-2). This reveals that with the increase in the occupant thermostat-changing uncertainties, the 653 

room temperatures tend to get closer to the occupants’ preferred room temperature. 654 

Though some improvement was noticed in the chance-constrained controller compared to the 655 

deterministic controller, the overall improvement was less than expected. This could be attributed 656 

to the following three factors. First, the impact of the uncertainty level on the controller 657 

performance improvement is prominent as we observe higher performance improvement in high 658 

uncertainty scenarios. Second, the thermal property, especially thermal mass, of the building itself 659 

also affects the results. Thermal mass serves as a thermal buffer to filter the impact of various 660 

HVAC supply temperatures. Hence, buildings with a larger thermal mass tend to experience less 661 

impact from the occupant thermal preference uncertainty. This can be demonstrated by the results 662 

of the ice cream shop, where the two controllers perform the same. Third, the plant-model 663 

mismatch also plays a significant role in the transition from the optimal scheduler design to its 664 

implementation. In the design phase, a series of control-oriented linear regression building models 665 
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was used. However, the testing took place on a high-fidelity physics-based testbed, where the 666 

complex system dynamics of the whole buildings and HVAC systems were modeled with shorter 667 

simulation timesteps. This is a common source of uncertainty to be addressed for MPC design and 668 

implementation. 669 

In our opinion, joint effort from building scientists, modelers, and engineers is needed to facilitate 670 

implementing stochasticity in the building domain and ultimately better serve the occupants. For 671 

example, an open-source database focused on building performance related stochasticity such as 672 

the occupant behavior and weather forecast needs to be established. Further, readily available 673 

stochastic simulation tools need to be developed (e.g., Occupancy Simulator [45]). Finally, 674 

stochasticity needs to be incorporated into the whole process of building modeling and design in 675 

the form of boundary conditions or internal components. 676 

6 Conclusion 677 

In this paper, we proposed a preference-aware scheduler for resilient communities. Stochastic 678 

occupant thermostat-changing behavior models were introduced into a deterministic load 679 

scheduling framework as a source of uncertainty. The impact of occupant behavior uncertainty on 680 

community optimal scheduling strategies was discussed. KRIs such as the unserved load ratio, the 681 

required battery size, and the unmet thermal preference hours were adopted to quantify the impacts 682 

of uncertainties. Generally, the proposed controller performs better in terms of the unmet thermal 683 

preference hours and the battery sizes compared to the deterministic controller. Though only tested 684 

on three buildings of the studied community, the methodology of introducing occupant behavior 685 

uncertainty into load scheduling and testing can be generalized and applied to other building and 686 

behavior types.  687 

More specifically, we determined that occupant thermostat-changing behavior uncertainty should 688 

be considered when designing optimal schedulers for resilient communities. For the whole 689 

community, when considering the highest occupant behavior uncertainty, the consumed HVAC 690 

energy can be 57.2% less and the battery 8.08% smaller. During the controller testing phase, the 691 

proposed chance-constrained controller proves its advantage over the deterministic controller by 692 

better serving the occupants’ thermal needs and demonstrating a savings of 6.7 kWh of battery 693 

capacity for the whole community. Additionally, we noticed that with the presence of occupant 694 
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thermostat-changing uncertainties, the room temperatures tend to get closer to the occupants’ 695 

preferred room temperature. 696 

During the simulation experiments, we noticed some limitations of the proposed work. Because 697 

the proposed uncertainty method mainly deals with the uncertainty through the temperature 698 

constraints, it can be less effective for buildings of larger thermal mass due to the insensitivity to 699 

temperature constraints. Also, plant-model mismatch was noticed in the controller testing phase, 700 

which is a common parametric uncertainty that originates from neglected dynamics of the 701 

plant [25]. Finally, we used the thermostat changing models developed based on data from private 702 

office spaces in different building types, which can be debatable. Future work for this research 703 

includes extending the scope to heating scenarios to further generalize the findings. Additionally, 704 

real-time MPC control techniques could be integrated into the framework to overcome the lack of 705 

flexibility in a priori designed controllers.  706 
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Appendix A 715 

Table A-1 Complete list of building loads and heat gain coefficients [31–33]. 716 

Building No. Load 
Capacity 

[W] 

Heat Gain 

Coefficient 

Heat Gain 

[W] 

Weighted Average 

Coefficient 

Residential 

1 Lights 293 0.8 234.4 

0.31 
2 Refrigerator 494 0.4 197.6 

3 Computer 18 0.15 2.7 

4 Range 1775 0.34 603.5 
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Building No. Load 
Capacity 

[W] 

Heat Gain 

Coefficient 

Heat Gain 

[W] 

Weighted Average 

Coefficient 

5 Washer 438 0.8 350.4 

6 Dryer 2795 0.15 419.25 

Ice Cream 

Shop 

1 Lights 135 0.8 108 

0.35 

2 Coolers 7394 0.4 2957.6 

3 Display case 280 0.4 112 

4 Coffee maker 2721 0.3 816.3 

5 Soda dispenser 201 0.5 100.5 

6 
Outdoor ice 

storage 
1127 0 0 

Bakery 

1 Lights 1859 0.8 1487.2 

0.38 

2 Coolers 4161 0.4 1664.4 

3 Display case 1011 0.4 404.4 

4 Range 4065 0.15 609.75 

5 Mixer 521 0.31 161.51 

6 Gas oven 761 0.2 152.2 

7 Room plugs 377 0.5 188.5 

8 Microwave 1664 0.67 1114.88 

9 Dishwasher 1552 0.15 232.8 

 717 

 718 

Figure A-1 Optimal schedules of the heat pump speed ratio and predicted room temperatures by 719 

various schedulers (ice cream shop). 720 
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 721 

Figure A-2 Optimal schedules of the heat pump speed ratio and predicted room temperatures by 722 

various schedulers (bakery). 723 

Table A-2 Full comparison of controller performances under different uncertainty levels in all 724 

three buildings. 725 

KRIs Controller 

Residential Ice Cream Shop Bakery 

Low 
Mediu

m 
High Low 

Mediu

m 
High Low 

Mediu

m 
High 

Unmet 

Thermal 

Preference 

Hours [ºC·h] 

Deterministic 33.70 47.19 48.91 70.69 85.61 86.87 89.03 88.80 102.81 

Chance-

constrained  
33.70 47.19 46.42 70.69 85.61 86.87 89.03 91.28 101.61 

Mean Room 

Temperature 

[ºC] 

Deterministic 24.38 23.69 23.75 21.23 22.87 23.38 25.34 24.27 23.65 

Chance-

constrained  
24.38 23.69 23.87 21.23 22.87 23.38 25.34 24.50 23.89 

Unserved 

Load Ratio 

Deterministic 0.074 0.022 0.025 

Chance-

constrained  
0.074 0.074 0.074 0.022 0.022 0.022 0.025 0.025 0.025 

Required 

Battery Size 

[kWh] 

Deterministic 47.69 99.14 80.01 

Chance-

constrained 
47.69 47.69 44.12 99.14 99.14 99.14 80.01 76.89 76.89 
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