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Mitochondria play an important role in the integration and

transmission of cell death signals, activating caspases

and other cell death execution events by releasing

apoptogenic proteins from the intermembrane space.

The BCL-2 family of proteins localize (or can be targeted)

to mitochondria and regulate the permeability of the

mitochondrial outer membrane to these apoptotic factors.

Recent evidence suggests that multiple mechanisms may

regulate the release of mitochondrial factors, some of

which depend on the action of caspases.
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Introduction
In mammals, diverse death stimuli induce apoptosis by

activating the caspase family of cysteine proteases and

various cell disassembly processes. In many instances this

task is mediated by mitochondria, which sense incoming

apoptotic signals and respond to them by releasing apop-

togenic factors from the mitochondrial intermembrane

space (IMS) into the cytosol and the nucleus, where they

trigger caspase activation and other cell death events.

For instance, mitochondrial release of cytochrome c
ncedirect.com
(cyt.c) triggers the assembly of a cytosolic caspase activa-

tion complex, the apoptosome, whereas release of Smac/

DIABLO and Htra2/Omi inactivates the inhibitors of

apoptosis (IAPs), a family of caspase inhibitors, facilitat-

ing the activation of caspases [1]. Mitochondria also

release apoptosis-inducing factor (AIF) and endonuclease

G (EndoG), which enter the nucleus and cooperate to

degrade nuclear DNA [2–4,5�]. The precise mechanisms

by which the permeability of the outer mitochondrial

membrane (OMM) becomes compromised during apop-

tosis (hereafter referred to as mitochondrial membrane

permeabilization, MMP) and by which the apoptogenic

factors are released have remained elusive, although it is

clear that these processes are governed by the BCL-2

family of proteins and in some cases by caspases them-

selves. The role of mitochondria during apoptosis has

been investigated thoroughly and is reviewed in detail

elsewhere (for example see [6–8]). Here, we focus on

recent findings that contribute to our understanding of

the regulation of MMP by BCL-2 proteins and caspases.

BCL-2 family proteins and mitochondria
BCL-2 family proteins can generally be subdivided into

three classes on the basis of their functions and the

number of BCL-2 homology (BH) domains present: the

anti-apoptotic members such as BCL-2 and BCL-xL that

have four BH domains (BH1 to BH4), the pro-apoptotic

members such as BAK and BAX that possess three BH

domains (BH1 to BH3), and the ‘BH3-only’ pro-apoptotic

members such as Bid and Bim that share homology only

within the BH3 domain [9]. Proteins in these three classes

are capable of forming either homo-oligomers or hetero-

dimers with one another and appear to play distinct roles

in governing MMP. BAX and BAK, each of which can

form homo-oligomers in the OMM in response to apop-

totic signals, constitute a partially redundant, but requi-

site, gateway for OMM permeabilization because cells

doubly deficient for these two proteins are resistant to

cyt.c release and apoptosis induced by multiple apoptotic

stimuli [10,11]. By contrast, cells deficient for individual

BH3-only proteins are resistant to cyt.c release or cell

death induced by selective cell death signals [12–15].

BH3-only proteins such as BAD, BIM and BID appear

to function upstream of BAX and BAK, because ectopic

expression of these proteins could not induce cyt.c re-

lease and apoptosis in cells lacking both BAX and

BAK [10,11,16]. In addition, overexpression of BCL-2

or BCL-xL can block MMP induced by ectopically

expressed BH3-only proteins or by BAX and/or BAK

[17]. These observations suggest that the interplay of
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different classes of BCL-2 family proteins is crucial in

determining the ultimate mitochondrial response. It is

now widely accepted that distinct apoptotic signals first

converge upon different BH3-only proteins, which upon

activation deliver the death signals to mitochondria by

engaging BAX/BAK or BCL-2/BCL-xL. BH3-only pro-

teins are typically activated by either post-translational

modifications, such as caspase-8-mediated cleavage of

BID into an activated, truncated BID (tBID), or by

transcriptional upregulation (reviewed in [18]).

In healthy cells, BAK is held in an inactive, monomeric

state in the OMM through its association with VDAC-2

[19], whereas BAX may lay dormant in the cytosol

through interactions with several proteins, including

Ku-70 [20], 14-3-3 [21] and the humanin peptide [22].

Many apoptotic signals can trigger BH3-only-protein-

dependent translocation of Bax, followed by its insertion

into the OMM [23] and the formation of BAK or BAX

homo-oligomers [24,25,26��], which are likely exit con-

duits in the OMM for apoptotic IMS proteins (see below).

Several models have been proposed for how BCL-2 anti-

apoptotic proteins antagonize the functions of BAX, BAK

and BH3-only proteins. Cheng et al., reported that the

ability of BCL-2 or BCL-xL to inhibit apoptosis induced

by BID, BIM or BAD expression correlates with their

ability to bind the BH3-only proteins but not BAX/BAK

[16]. This observation suggests that BCL-2 anti-apoptotic

proteins may act by sequestering active BH3-only pro-

teins away from BAX/BAK. However, increased associa-

tion between BCL-2 and BAK is observed following

binding of tBID to BAK [19,27], suggesting that BCL-

2 might also play a direct role in regulating BAK or BAX

oligomerization. In addition, the membrane topology of

BCL-2 alters during apoptosis, or following treatment of

isolated mitochondria with BIM, reflecting a potential

BCL-2 conformational change in response to an activated

BAK/BAX complex [28]. Thus, BCL-2 anti-apoptotic

proteins may function both by sequestering active

BH3-only proteins and by restricting BAX/BAK oligo-

merization, thereby setting an activation barrier for the

induction of apoptosis and limiting inappropriate cell

death. During apoptosis, the anti-apoptotic activity of

BCL-2 is probably overcome by simultaneous activation

of distinct classes of BH3-only proteins, some of which

bind to and inactivate BCL-2, setting ‘activator’ BH3-

only proteins free to activate BAX/BAK [29�].

How do BAX and BAK mediate permeabilization of the

OMM? Clues come from the structures of BCL-2, BCL-

xL and BAX, all of which reveal a striking similarity

to those of the pore-forming domains of bacterial toxins

[30–32]. A simple model for MMP, therefore, is that BH3-

only proteins induce an allosteric conformational change

in BAX/BAK, triggering their oligomerization into large

pores in the OMM. Indeed, Newmeyer and colleagues

found that tBID and BAX (or oligomerized BAX alone)
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could form supramolecular openings in reconstituted

liposomes, allowing the passage of two-megadalton dex-

trans [26��]. Interestingly, the formation of these mem-

brane openings is absolutely dependent on the presence

of cardiolipin, a lipid enriched in the inner mitochondrial

membrane (IMM) and at IMM and OMM contact sites

[33]. tBID and BCL-2 have been shown to cluster at such

contact points [34–36], which may be local sites of action

for BCL-2 proteins. While the biophysical properties of a

cardiolipin-enriched environment might be important

for BAX/BAK to promote the local membrane curvature

needed for the formation of a lipidic pore [26��], it

remains unclear whether BAX and BAK act at contact

sites or non-contact sites to permeabilize the OMM.

Several lines of evidence suggest that regulation of MMP

by BCL-2 proteins entails more than BAX/BAK punching

holes in the OMM to allow IMS proteins to leak out. First,

the release profiles of different IMS proteins vary in their

timings and dependence on other factors such as caspases

(see below), suggesting that there are upstream check-

points that must be met before a given IMS protein is

released. Second, mitochondria appear to undergo several

changes in membrane structure and morphology before

the release of cyt.c, including mitochondrial fission [37],

IMM cristae remodeling [36,38�] and lipid peroxidation

[39]; all these changes appear to affect cyt.c release.

Third, numerous studies indicate that transient openings

in the mitochondrial permeability transition pore

(mtPTP), a large, high-conductance multi-protein com-

plex that spans the IMM and OMM, are important for the

release of cyt.c [38�,40,41]. And fourth, BCL-2 family

proteins such as BAX, BAK and BCL-2 also localize to the

endoplasmic reticulum (ER) and can affect ER Ca2+

homeostasis and Ca2+ uptake by mitochondria, which

may be important for mtPTP opening and IMS protein

release in some instances [42–45]. Some of these phe-

nomena may be explained by interactions that have been

observed between BCL-2 family proteins and compo-

nents of the mtPTP [46,47] or the mitochondrial fission

machinery [48]. It is also possible that BAX and BAK

cooperate with the mtPTP to form a channel in the OMM

that is inhibited by BCL-2 (reviewed in [49]). Thus,

BCL-2 family proteins may activate numerous processes

in the mitochondria and ER during apoptosis, including

reorganization of apoptogenic proteins within the IMS

before their ultimate passage across the OMM.

Caspase activation and mitochondrial factor
release, which comes first?
Although it is clear that MMP is involved in the activation

of caspases, there has been considerable debate over

whether MMP can occur independently of caspase activ-

ities. In the case of extrinsic cytokine signaling through

cell surface death receptors, it is clear that initiator

caspases such as caspase-8 can induce MMP by cleaving

BID into tBID [17,50,51]; tBID then amplifies weak
www.sciencedirect.com
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initiator caspase signals by evoking the release of cyt.c,

Smac/Diablo and Htra2/Omi to activate the apoptosome

and to relieve IAP inhibition of caspases [52]. In the case

of intrinsic death signals such as genotoxic stresses, the

kinetics of cyt.c release do not seem to be affected by

caspase inhibitors, suggesting that cyt.c release can also

occur independently of caspases [40,53]. However, proof

of a truly caspase-independent MMP pathway is hard to

come by given that some caspases may be insensitive to

commonly used caspase inhibitors [54]. Caspase-2, for

example, is zVAD-FMK-insensitive and can directly

evoke the release of cyt.c and SMAC from isolated

mitochondria [55–57]. Indeed, siRNA knock-down of

caspase-2 blocks cyt.c and SMAC release from mitochon-

dria following genotoxic stresses in some human tumor

cell lines [58]. Interestingly, caspase-2 may not require its

enzymatic activity to cause MMP [57], suggesting alter-

native regulatory functions for caspases and calling into

question results obtained from caspase inhibitors. How-

ever, genetic elimination of caspase-2 in mice does not

result in a significant defect in developmental cell deaths

[59]. Thus, in many cellular contexts, caspase-2 might

play a non-essential, or perhaps redundant, role in med-

iating the release of mitochondrial apoptogenic factors.

Different IMS proteins may have different modes of

escape from mitochondria, some being caspase-depen-

dent and others not. For example, it has been reported

that zVAD-fmk could inhibit the release of SMAC [60],

AIF and EndoG [61�], but not of cyt.c, from mitochondria

following intrinsic death insults. Furthermore, in [61�] it

was shown that tBID or oligomerized BAX could release

cyt.c, but not AIF and EndoG, from isolated mitochon-

dria. These observations are consistent with studies in

Caenorhabditis elegans showing that release of WAH-1, a

worm AIF orthologue, from mitochondria by the BH3-

only protein EGL-1 is strongly inhibited by a loss-of-

function mutation in the CED-3 caspase [5�]. It is not

clear whether the limited release of WAH-1 observed in

the ced-3 mutant represents a bona fide caspase-indepen-

dent event or is caused by other C. elegans caspases [62].

Nonetheless, these findings, and the observation that AIF

and EndoG appear to be more tightly associated with the

IMM than cyt.c [61�], suggest that caspase-mediated

proteolysis of certain cytosolic or mitochondrial compo-

nents may be crucial to promote the transport of these

IMS proteins across the OMM (see below).

How might caspases exert their effects on mitochondria?

One mechanism is through the cleavage and activation

of the BH3-only proteins such as BID [50,51] and BAD

[63], or cleavage and reversal of the anti-apoptotic func-

tions of BCL-2 [64] and BCL-xL [65]. Recent reports by

Green and colleagues revealed that caspases can cause

mitochondrial respiratory dysfunction following limited

permeabilization of the OMM by BAX/BAK [66,67��].
Caspase-3 cleaves the 75-kD subunit of complex I of
www.sciencedirect.com
the electron transport chain, and probably another com-

ponent of complex II, resulting in disruption of electron

flow from complex I and II, loss of mitochondrial trans-

membrane potential (Dcm), an increased production

of reactive oxygen species (ROS), and disruption of

mitochondrial morphology; all of these are events that

normally occur during apoptosis but are prevented by

zVAD-fmk [66]. Interestingly, all of these events are

attenuated in cells expressing a caspase-resistant p75

mutant, although cyt.c release occurs normally. These

observations suggest a likely sequential process for acti-

vating MMP involving an initial release of cyt.c without

disruption of the respiratory processes. This would ensure

a sufficient supply of ATP for various apoptotic processes

while caspases are being activated in the cytosol [40]. By

this model, once activated, caspases would enter mito-

chondria through the partially permeabilized OMM and

mount a catastrophic attack, crippling energy production

and ensuring the demise of the cell. In addition, the

resulting production of ROS, concomitant lipid peroxida-

tion, gross organelle swelling and morphological disrup-

tion [67��] might then further facilitate the dissociation

and release of AIF and EndoG from the IMM [61�].

Conclusions
Genetic and biochemical studies have demonstrated that

BCL-2 family proteins are central to the regulation of

MMP. A major challenge now is to investigate how these

proteins act on mitochondria to influence MMP. At pre-

sent, it seems reasonable to conclude that both caspase-

dependent and -independent pathways of MMP exist;

which one is used probably depends on the cellular con-

text and death stimuli. In some instances, MMP may occur

in a multi-step process in which cyt.c, SMAC and HtrA2/

Omi are released first, allowing caspase activation, fol-

lowed by caspase-dependent release of AIF and EndoG

[61�]. This may ensure that complete nuclear DNA degra-

dation occurs only after caspases are activated and the

respiratory potential of the cell is lost. Notably, however,

reports of a BID cleavage product, jBID, that induces

Smac release from mitochondria in the absence of cyt.c

release [68], and the finding that AIF release can occur

independently of caspases in some cases [69], suggest that

the picture maybe more complicated than anticipated. It

will be important to determine the molecular basis for

these different release modes of apoptogenic factors from

mitochondria. Finally, in light of the fact that the mito-

chondrion also seems to play an important role during cell

death in nematodes [4,5�,70] and yeast (G Kroemer,

personal communication), these model organisms may

prove powerful for genetically delineating pathways that

regulate the release of mitochondrial apoptogenic factors,

a task that could be difficult to pursue in higher organisms.
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