Graduate Student Orientation - CLASIC

August 24, 2023

Susan Windisch Brown

Welcome to CLASIC

People

- CLASIC Director
 - Susan W. Brown Susan.Brown@Colorado.EDU
- CLASIC Program Coordinator
 - Kris Stenzel clasic_contact@colorado.edu
- CLASIC Director Emerita
 - ► Martha Palmer Martha.Palmer@colorado.edu
- Other Faculty
 - ▶ Jim Martin, Maria Pacheco Gonzalez, Mans Hulden, Alexis Palmer
- CLEAR weekly lab meetings (CompSem)
 - ▶ 10:30 12, Wednesdays, LBB 430

CLASIC Advisory Board

- Salim Roukos (IBM)
- Peter Foltz (Pearson)
- Marjorie Freedman (ISI)
- Miriam Eckert (Nuance)
- ► Alessandro Moschitti (Amazon)
- ► Bill Dolan (Microsoft)
- Nancy Chang (Google)

Work opportunities

- Professional masters students are ineligible for teaching or research assistantships (TA and RA positions).
- Any hourly paid position at the university is fine.
- Common types:
 - ► Grading for computer science classes
 - Hourly student positions in research labs (CLEAR has several grant-funded research projects that often hire students.)
- Continuing summer internship during the school year

Registering for classes

- Advising session via Zoom or in person each semester
- Submit any prerequisite forms for CS classes
- Register directly for LING and CS classes
- Contact Kris Stenzel if you have problems registering for any classes

Degree Overview - 32 credit hours

CS Core - 6 credit hours	LING Core - 9 credit hours	CLASIC Core - 17 credit hours		
		Computational Linguistics Classes - 9 credit hrs	2 Electives - 6 credit hrs	Capstone Research Project - 2 credit hrs
 1 class from CS Bin 1 1 class from CS Bin 3 	2 of these 3 courses: • Syntax • Semantics & Pragmatics • Phonetics • 1 of any advisor-approved LING course	3 Courses: 1. Natural Language Processing 2. Computation al Lexical Semantics 3. Computation al Phonology	Choose from: • Topic Modeling • Speech Recognition • Formal Semantics • etc.	 Summer Internship or university project Course in Spring of Year 2

Computer Science Core: 3 breadth areas ("Bins")

https://www.colorado.edu/cs/graduate-breadth-courses

Computer Science Core: Our recommendations:

Bin One

- » CSCI 5229 Computer Graphics
- SCI 5254 Convex Optimization
- » CSCI 5434 Probability for Computer Science
- SCI 5444 Introduction to Theory of Computation
- SCI 5446 Chaotic Dynamics
- » CSCI 5454 Design and Analysis of Algorithms
- SCSCI 5576 High-Performance Scientific Computing
- SCSCI 5606 Principles of Numerical Computation
- SCI 5636 Numerical Solution of Partial Differential Equations
- » CSCI 5646 Numerical Linear Algebra
- » CSCI 5654 Linear Programming
- SCI 5676 Numerical Methods for Unconstrained Optimization

Computer Science Core: Our recommendations:

Bin Three

- SCI 5135 Computer-Aided Verification
- SCI 5253 Datacenter Scale Computing
- SCI 5273 Network Systems
- CSCI 5403 Intro to Cyber Security
- SCI 5413 Ethical Hacking
- » CSCI 5448 Object-Oriented Analysis and Design
- » CSCI 5525 Compiler Construction
- SCSCI 5535 Fundamental Concepts of Programming Languages
- SCSCI 5573 Advanced Operating Systems
- SCI 5673 Distributed Systems
- » CSCI 5828 Foundations of Software Engineering
- SCI 5854 Theoretical Foundation of Cyber-Physical System

Linguistics Core: 2 of the following 3 LING courses +1 approved LING course

- ► LING 5030 Phonetics (offered in fall)
- LING 5420 Morphology and Syntax (offered in fall)
- ► LING 5430 Semantics and Pragmatics (offered in spring)

Possible Linguistics electives

- LING 5200 Computational Corpus Linguistics
- ► LING 5800 Machine Learning and Linguistics
- ► LING 6300/3800 Formal Models of Linguistics
- LING 6200 Issues and Methods in Cognitive Science
- ► LING 7800 Open Topics in Linguistics

CLASIC Core: 5 courses

*Jim Martin wrote the book

- ► **REQUIRED:** CSCI/LING 5832 Natural Language Processing
- REQUIRED 2 of 3:
 - ► CSCI 7000/LING 7800 Computational Lexical Semantics
 - CSCI/LING 7565 Computational Morphology and Phonology
 - ▶ LING 7800 Computational Models of Discourse
- **2 Electives,** approved by advisor

CLASIC Core: 2 electives

Bin Two

- SCI 5302 Advanced Robotics
- » CSCI 5322 Algorithmic Human Robot Interaction
- SCI 5352 Network Analysis and Modeling
- SCI 5402 Research Methods in Human Robot Interaction
- SCI 5502 Data Mining
- SCI 5616 Introduction to Virtual Reality
- » CSCI 5622 Machine Learning
- SCI 5722 Computer Vision
- SCI 5832 Natural Language Processing
- SCSCI 5839 User Centered Design
- » CSCI 5849 Input Interaction and Accessibility
- SCI 5922 Neural Networks and Deep Learning

CLASIC Core: Other possible electives

- LING 6520 Topics in Comparative Grammars: Computational Grammars
- CSCI 7000 Inference, Models and Simulation for Complex Systems
- CSCI 7222 Probabilistic Models of Human and Machine Intelligence
- CSCI 7222 Topics in non-symbolic AI: Representation Learning for Language
- ► LING 5200 Computational Corpus Linguistics
- ► LING 5800 Machine Learning and Linguistics
- ► LING 7800 Open Topics in Linguistics
- INFO 5604 Applied Machine Learning

Degree Overview - 32 credit hours

CS Core - 6 credit hours	LING Core - 9 credit hours	CLASIC Core - 17 credit hours		
		Computational Linguistics Classes - 9 credit hrs	2 Electives - 6 credit hrs	Capstone Research Project - 2 credit hrs
 1 class from CS Bin 1 1 class from CS Bin 3 	 2 of these 3 courses: Syntax Semantics & Pragmatics Phonetics +1 of any advisor-approved LING course 	 Courses: NLP (req) Comp. Lexical Semantics Comp Phonology Comp Models of Discourse 	 Choose from: Topic	 Summer Internship or university project Course in Spring of Year 2

- We expect students to get at least a B
- ► CS Bin courses must be B or higher (no B-)
- ► Graduate School **only** accepts C or higher (no C-)

Degree audit

- ► This CU system keeps track of your progress on degree requirements
- Our degree requirements allow so many options that I must manually approve many course choices in the CU system
- Advising is essential
- Send me your final schedule each semester

Capstone Project and Class Timeline

- Spring 2024 Find an internship or CU-based research project.
- May 2024 Develop a training and research plan in collaboration with your Capstone project leader.
- August 2024 Write short summary of internship, approved by project leader at the end of the internship.
- ➤ Spring 2025 Prepare a technical report during the Capstone class on the completed project, which will be presented to your fellow cohort members and submitted to a conference or workshop in Spring 2025.

Finding the internship

In mid fall, we will have an internship information session

Questions?

