

# Deployable Helical Antenna



College of Engineering & Applied Science

Jackson Bilello | GillianGrace Brachocki | Hector Calar | Benjamin Capek | Ahmed Ferjani | Ayden Flynn | Nicolas Garzione | Caleb Morford | Isaac Nagel-Brice | Manny Preston de Miranda

## Background & Impact

- Industry shift from large satellites to a fleet of smaller satellites necessitates deployable instrumentation
- Maintains antenna performance while drastically reducing launch volume
- Robust data transmission through helical antennas

## Design Requirements

- √ : Deploy to 4x stowed height, < 4kg, < 20cm x 40cm
  </p>
- √: Fully deploy within 90 seconds
- √: ±50% Scalability
- √ : Capable of 50 deployments without damage/fatigue
- √: Less than 1000 g's of self-induced shock
- √: Survive random launch vibrations of Atlas V rocket
- ✓: L-band antenna functionality

## Testing

### VIBRATION



- Survived Atlas V
- Design Change: Improve electrical harnessing

### **DEPLOYMENT**



- Antenna deploys buckled due to spring, compression system, & lid
- Deploys 98% of full height
- Design Change: Improve rotary damper system

### MECHANICAL SHOCK ANTENNA



- 600 g's maximum
- 100 g's of shock at mounting interface



- 9dB of gain
- Analog antenna met expected performance

## Design Overview



### ROTARY DAMPER SYSTEM



- Designed to control spring deployment and reduce shock
- Custom spool, spool cover, and damper mount
- Encoder counts spool rotations to verify full deployment

### STOWED CANISTERS



- Houses all internal components
- Designed with interlocking features to withstand launch vibrations

### RELEASE MECHANISM



 Electronics send current through highly resistive wire to burn through restraint lines initiating deployment

**PCB** 



- Customized electronics initiate and monitor antenna deployment
- Electrical redundancy to ensure deployment

### ANTENNA ATTACHMENT



**CONNECTOR** 

- Electrical insulation for antenna feed and performance
- Ferrule doubles as a structure to disperse the load of the spring and to transfer the signal from SMA connector to antenna
- Poor quality of outsourced spring manufacturing and material mismatch do not allow for proper RF transmission

### ANTENNA OPTIMIZATION

- Spring and antenna designed for passive deployment
- Matches capabilities of rigid antenna predecessors
- Both a mechanical spring and functioning antenna



