First stars and galaxies with FARSIDE Jordan Mirocha (McGill)

Outline

I. The 21-cm Universe

What is the 21-cm signal and how does it probe astrophysics and cosmology?

II. Expectations

How solid are theoretical predictions, and what do we learn if they are wrong?

III. Broader context

How is FARSIDE+ complementary to other upcoming facilities, like JWST?

21-cm Physics

Ground-state hyper-fine splitting

21-cm Physics

Ground-state hyper-fine splitting

M101

Most famous 21-cm application historically: mapping galaxy rotation curves via HI emission.

Big Picture

THINGS (see, e.g., Walter+ 2008)

TIDAL INTERACTIONS IN M81 GROUP Stellar Light Distribution 21 cm HI Distribution

Images courtesy NRAO

Big Picture

Where's "the rest" of the H?

TIDAL INTERACTIONS IN M81 GROUP Stellar Light Distribution

Images courtesy NRAO

Big Picture

Where's "the rest" of the H?

These regions aren't empty, they are *ionized*.

This "intergalactic medium" (ĪGM) hasn't always been ionized!

Big Picture

CMB $\sim 100 { m Myr}$

ionized bubbles Madau et al. (1997), Shaver et al. (1999)

Big Picture

CMB

$\sim 100 { m Myr}$

21-cm signal is a cosmic "negative" as it traces space outside bubbles.

Overall amplitude encodes volume of space filled by bubbles, but also temperature of the IGM.

As a result, traces stars (UV ionizes gas), compact objects (Xrays heat gas), exotic physics can affect ionization and temperature.

Madau et al. (1997), Shaver et al. (1999)

ionized bubbles

Big Picture

 $\sim 1 \mathrm{Gyr}$

Observed wavelength indicates cosmic epoch

$\lambda_{\rm obs} = 21 \rm{cm} \times (1+z)$

Observed wavelength indicates cosmic epoch

The global 21-cm signal targets the volume-averaged brightness temperature

t ~ 100 Myr

Mesinger, Furlanetto, & Cen 2011

$\lambda_{\rm obs} = 21 \rm{cm} \times (1+z)$

Efficiency of 11.2-13.6 eV photon production

Efficiency of ~0.2-2 keV photon production

Efficiency of 13.6-24.6 eV photon production

Proxy for typical mass of early galaxies

Efficiency of 11.2-13.6 eV photon production

Efficiency of ~0.2-2 keV photon production

Efficiency of 13.6-24.6 eV photon production

Proxy for typical mass of early galaxies

Efficiency of 11.2-13.6 eV photon production

Efficiency of ~0.2-2 keV photon production

Efficiency of 13.6-24.6 eV photon production

Proxy for typical mass of early galaxies

Efficiency of 11.2-13.6 eV photon production

Efficiency of ~0.2-2 keV photon production

Efficiency of 13.6-24.6 eV photon production

Proxy for typical mass of early galaxies

Importance of low frequencies

The cosmic "dark ages" free of astrophysics: clean probe of cosmology and dark matter physics.

Constraints at earliest epoch break degeneracies between astrophysics and cosmology during the "cosmic dawn."

standard models (J.M. & Furlanetto 2017,2019)

EDGES signal (Bowman+ 2018; see talk at 12:20 MST)

Importance of low frequencies

The cosmic "dark ages" free of astrophysics: clean probe of cosmology and dark matter physics.

Constraints at earliest epoch break degeneracies between astrophysics and cosmology during the "cosmic dawn."

standard models (**J.M.** & Furlanetto 2017,2019)

EDGES signal (Bowman+ 2018; see talk at 12:20 MST)

Summary

- 21-cm background rich source of information on first galaxies, cosmology, and dark matter.
- Low frequencies best accessed from Moon vital for breaking degeneracies.
- EDGES non-standard in more ways than one. Hint of the very first stars and black holes?

on first galaxies, cosmology, and dark matter. — vital for breaking degeneracies. Hint of the very first stars and black holes?

Backup slides

Wouthuysen*-Field Effect

*vowt-how-sen

Wouthuysen*-Field Effect

Repeated scatterings (~10⁶ per photon) drive T_S to T_K .

*vowt-how-sen

Wouthuysen*-Field Effect

Repeated scatterings (~10⁶ per photon) drive T_S to T_K .

First stars generate UV background, which reveals IGM temperature!

> $1 {}_{1}S_{1/2}$ $1_0 S_{1/2}$

*vowt-how-sen

 T_{γ} CMB

"Differential brightness temperature": $\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right)$

e.g., Furlanetto (2006)

mK IS /

"Differential brightness temperature":

$$\delta T_b \simeq 27 \,\overline{x}_{\mathrm{H\ I}} (1+\delta) \left(\frac{1}{-1}\right)$$

e.g., Furlanetto (2006)

 $\left(\frac{1+z}{10}\right)^{1/2}$ $\left(1 - \frac{T_{\rm CMB}}{-}\right)$ mK $T_{\rm S}$ /

"Differential brightness temperature": $\delta T_b \simeq 27 \overline{x}_{\rm H~I} (1 + \delta) \left(\frac{1+z}{10}\right)^{1/2}$ for global signal

e.g., Furlanetto (2006)

 $+ \int \left(\frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T_{\rm CMB}}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T_{\rm CM}}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T$ mK $I_{\rm S}$ /

"Differential brightness temperature": $\delta T_b \simeq 27 \overline{x}_{\rm H~I} (1+\delta) \left(\frac{1+z}{10}\right)^{1/2} \left(\frac{1+z}{10}\right)^{1/2}$

e.g., Furlanetto (2006)

"Differential brightness temperature": $\int \left(\frac{1+z}{10}\right)$ $\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I}$ for global signal

e.g., Furlanetto (2006)

