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• Upper panel: Evolution of a Universe’s slice from early (left) to
late times (right).

• Lower panel: Standard models of the global 21-cm spectrum
relative to the CMB temperature; red models with metal-rich stars
(Pop II), black curves assume that metal-free stars (Pop III) also
occur, but only in low-mass galaxies where atomic cooling is
inefficient. The dashed and solid curves differ in specific emission
and stellar properties (see Burns et al. 2017 for details).

• The epochs B, C and D correspond to the ignition of the first stars, the
initial accretion of black holes, and the onset of reionization,
respectively.

• Figure from adapted in turn from Pritchard & Loeb (2010) using newer
models from Mirocha et al. (2017).
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• Antenna temperature simulated convolving beam, ! ", $ , and 
sky, %&'( ", $ , through

%) " = ∫! ", $ %&'( ", $ ,$
∫! ", $ ,$

• CST code used to model beam

• Sky maps from Guzmán et al. (2010) and Haslam et al. (1982)
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All-sky 408 MHz map from Haslam et al. (1982)

June 6, 2018

FOREGROUND TRAINING SET



• Beam-weighted foreground training set for a single 
rotation angle about one of the 4 antenna pointing 
directions (top).

• The same training set with its mean subtracted
(middle).

• The first 6 SVD basis functions obtained from the 
training set (bottom).

• The different rotation angles about each antenna 
pointing direction are part of the same training set so 
that SVD can pick up on angle-dependent structure 
and imprint it onto the basis functions.
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EXPERIMENTAL DESIGN: INCLUDING STOKES PARAMETERS 
INTO THE LIKELIHOOD FUNCTION



• Beam-weighted foreground training set for each LST 
bin.

• For a zenith pointing antenna from Earth, the drift 
scan data from different times are part of the same 
training set so that SVD can pick up on LST-
dependent structure and imprint it onto the basis 
functions.
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EXPERIMENTAL DESIGN: INCLUDING DRIFT SCAN INTO THE 
LIKELIHOOD FUNCTION

Preliminary (see also Tauscher’s poster)



• The signal training set used for our analysis was 
generated by running the ares code 7�105 times 
within reasonable parameter bounds in order to fill 
the frequency band. 

• The top panel shows a thinned sample of that set 
(black curves). The SVD modes are ordered from 
most to least important.

• The modes are normalized so that they yield 1 
when divided by the noise level, squared, and 
summed over frequency, antenna pointing, and 
rotation angles about the antenna pointing. 
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GLOBAL 21-CM SIGNAL TRAINING SET



• Grid of values of the Deviance Information Criterion 
(DIC).

• The colors indicate the difference between the DIC and 
its minimal value, marked by the white square.

• This same process can be done with any information 
criteria (BIC, AIC, BPIC, etc.). 

• Although only a 12�12 grid is shown here, all of the 
information criteria were calculated over a 60�30 grid.
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MODEL SELECTION:
OPTIMIZING THE NUMBER OF SIGNAL AND SYSTEMATIC MODES
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• Grid of values of the Bayesian Predictive 
Information Criterion (BPIC; Ando 2007).

where y is the full data vector. See further 
definitions in Tauscher et al (2018).

• The colors indicate the difference between the 
BPIC and its minimal value, marked by the white 
square.

SVD is a reliable way of capturing the modes of variation of
a single training set, but if it is performed independently on all
components of the data, it may not yield the optimal set of basis
vectors for the present purpose, which is separating the
different components when they are combined in the same
data set and fit simultaneously. Nevertheless, in lieu of a more
sophisticated technique, we perform SVD independently on
each training set.

2.3. Model Selection

To select from the models formed by different truncations of
the SVD basis sets, we set up a framework within which we
test figures of merit, known as information criteria, based on
the competition between two terms, the goodness-of-fit term
that measures the bias in the fit to the data and the complexity
term that penalizes the number of parameters used in that fit.
We consider the following information criteria for every
truncation under consideration: the DIC (Spiegelhalter et al.
2002, 2014), the BPIC (Ando 2007), and the BIC (Schwarz
1978). For our likelihood function (Equation (4)), up to
constants independent of the parameters, these are given by

C NDIC 2 , 8aT
p

1d d= +- ( )
C C C DNBPIC 2 Tr , 8bT

p
1 1 1d d D= + +- - -( ) ( )

C N NBIC ln . 8cT
p c

1d d= +- ( )
Np is the total number of varying modes across all N sets of
basis vectors, Nc is the total number of data channels,

GSGTD = , G yd x= - , and D diag 2d= [ ( )] . Note that
while the goodness-of-fit remains the same across the
information criteria, the complexity term varies. The AIC
(Akaike 1974) and a variant of the DIC where the complexity
term is based on the variance of the log-likelihood (Gelman
et al. 2013, page 173) were also considered but since our model
is linear, they are both equivalent to the DIC in Equation 8(a).
When truncating, i.e., selecting between our nested SVD
models, we choose the model that minimizes the desired
criterion. We investigate which information criterion works
best in our analysis in Section 3.2.

3. 21 cm Global Signal Application

3.1. Simulated Data and Training Sets

To illustrate our methods, we propose a simple, simulated
experiment to measure the global 21 cm signal using dual-
polarization antennas that yield data for all four Stokes
parameters at frequencies between 40 and 120MHz. For
simplicity, we ignore all systematic effects other than beam-
weighted foreground emission, such as human generated Radio
Frequency Interference (RFI), refraction, absorption, and
emission due to Earth’s ionosphere, and receiver gain and
noise temperature variations. The experiment proposed here is
similar to a pair of antennas orbiting above the lunar farside,
where the ionospheric effects and RFI need not be addressed
(Burns et al. 2017). An instrument training set corresponding to
a realistic antenna and receiver will be included in the analyses
of Papers II and III.

The data product of our simulated experiment is a set of 96
brightness temperature spectra. The spectra correspond to four
Stokes parameters and six different rotation angles for four
different antenna pointing directions. The data vector, y,

consists of the concatenation of all of the spectra. The noise
level of the data, σ, is roughly constant across the different
Stokes parameters and is related to the total power (Stokes I)
brightness temperature, Tb, through the radiometer equation,

T tbs n n n= D D( ) ( ) , with a frequency channel width nD
of 1MHz and an integration time tD of 1000 hr (split between
the different antenna pointing directions and rotation angles
about those directions). The data are split into N=5 different
components—one for the 21 cm signal and one for the beam-
weighted foregrounds (which are correlated across boresight
angles and frequency) of each pointing. The signal is the same
across all four pointings, while the foregrounds for each
pointing only affect the data from that pointing. The expansion
matrices encode this fact.
To create the beam-weighted foreground data for each of the

four antenna pointing directions, we use the simulation
framework of Nhan et al. (2017), henceforth referred to as
N17. Each Stokes parameter, ζ, observed by the instrument is
given by an expression of the form B T dI galò Wzl , where Tgal

is the galaxy brightness temperature and dW is the differential
solid angle. As in N17, the four relevant beams at frequency ν,
polar angle θ, and azimuthal angle f are of the form
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where b , exp 22 2n q q a nµ -( ) [ ( )] and a n( ) is the angular
extent of the beam as a function of frequency. The beam’s
polarization response converts intensity anisotropy into appar-
ent polarization, while the monopole (cosmological signal)
averages to zero in the instrumental Stokes Q and U channels.
Measurement in the polarization channels therefore provides
discrimination of foreground modes from the signal. Further-
more, rotation about the boresight is used to modulate the
polarized components. N17 used this method assuming a
spectrally invariant beam, and a sky following a single power
law in frequency. Here, with the aid of training sets, we extend
the method to allow for spectrally varying beams and an
arbitrary sky model. The Galaxy map used in this paper is a
spatially dependent power-law interpolation between the maps
provided by Haslam et al. (1982) and Guzmán et al. (2011).
The beam-weighted foreground training sets are created using
125 Gaussian beams described by Equation (9) with varying
quadratic models of a n( ). Figure 1 shows the training set for
one of the four antenna pointing directions and some of the
corresponding basis functions. Although V=0 in this work
because B 0I V =l , in real 21 cm global signal experiments
with polarimetry, since we expect no circularly polarized light
to be incident on the antenna, V can contain useful information
about instrument variations.
The 21 cm global signal training set and a few of the SVD

basis functions it provides are shown in Figure 2. The training
set was created by varying the parameters of the Accelerated
Reionization Era Simulations (ares) code.12 See Mirocha
et al. (2015, 2017a, 2017b) for information on the signal
models used by ares. In this paper, we ignore the parameter

12 https://bitbucket.org/mirochaj/ares
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125 Gaussian beams described by Equation (9) with varying
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corresponding basis functions. Although V=0 in this work
because B 0I V =l , in real 21 cm global signal experiments
with polarimetry, since we expect no circularly polarized light
to be incident on the antenna, V can contain useful information
about instrument variations.
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basis functions it provides are shown in Figure 2. The training
set was created by varying the parameters of the Accelerated
Reionization Era Simulations (ares) code.12 See Mirocha
et al. (2015, 2017a, 2017b) for information on the signal
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Signal Extraction optimization:

The black line for all panels is the input 
21-cm signal. 

The blue bands are the pipeline 
reconstructions of the signal for a given 
number of SVD signal and systematic 
parameters/modes.
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MODEL SELECTION:

ANOTHER EXAMPLE USING BPIC

Signal Extraction optimization:

The black line for all panels is the input 

21-cm signal. 

The blue bands are the pipeline 

reconstructions of the signal for a given 

number of SVD signal and systematic 

parameters/modes.



AAS MiM | Denver

Tauscher et al. (2018)

See the pylinex in this link: https://bitbucket.org/ktausch/pylinex
June 6, 2018

Signal Estimates
from linear models 
defined by SVD 
eigenmodes. The 
black curves show 
the input signals, 
the red curves the 
signal estimates, 
the dark/light red 
bands the posterior 
68/95% confidence 
intervals. 

The input signals 
for the 4 left plots 
came from the ares
signal training set, 
and the 4 on the 
right from the tanh 
model (see e.g. 
Harker et al. 2016).
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SIGNAL EXTRACTION WITH THE CODE PYLINEX

https://bitbucket.org/ktausch/pylinex
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SIGNAL EXTRACTION WITH THE CODE PYLINEX

See the pylinex in this link: https://bitbucket.org/ktausch/pylinex

Example of training set 
with non-standard 
cooling rates with ares
allowing larger amplitudes 
consistent with that of 
EDGES.

Including both the dark 
ages and the cosmic 
dawn troughs.

For a given input signal 
(black curve), the 
dark/light red bands 
correspond to the signal 
estimate for DAPPER in 
the range 15-26 MHz.

https://bitbucket.org/ktausch/pylinex
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• The signal bias statistic is a measure of the root mean square 
error weighted bias of the signal fit:

• Estimate of the Cumulative Distribution Function (CDF) of the 
signal bias statistic from 5000 input simulated datasets.

• A bias statistic of ε roughly corresponds to a bias at the εσ level. 
The solid black reference line is for the distribution which 
associates 1σ with 68% confidence and 2σ with 95%. 

• To guide the eye, the dotted black line indicates the 95% level.

June 6, 2018

SIGNAL BIAS STATISTIC



• The deviance normalized by the degrees of freedom 
contains information about how well the training sets fit 
the data:

• Histogram of the Probability Distribution Function (PDF)
for 5000 values of the normalized deviance from fits with 
different input signals, beam-weighted foregrounds, and 
noise when using the DIC to choose the best model.

• D should follow a distribution approximated by the 
extremely thin black region, which is a combination of 
chisquare distributions associated with the range of 
degrees of freedom chosen for the extractions.
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NORMALIZED DEVIANCE
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Theory

• After extracting the signal in frequency space in the first step of the pipeline we need to transform this result into a 

constraint in physical parameter space.

• For this, we use a multi-dimensional interpolation using a Delaunay mesh for the change in parameter space and then a 

Markov Chain Monte Carlo search to constrain the full probability distribution.

(Rapetti et al. 2018, in preparation)

June 6, 2018

SVD/MCMC DATA ANALYSIS PIPELINE

(PRELIMINARY)
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(Rapetti et al. 2018, in preparation)

• We generalize linear interpolation to arbitrary 
input and output dimensions.

• We use this interpolation to perform a least 
square fit (red line) using the training set.

• Importantly, note that having an starting point 
(green line) within the estimated error (blue 
band) provided by the first (very fast) step of 
the pipeline is crucial for the convergence of 
the MCMC in a vast parameter space where 
we do not have otherwise any prior 
information on the solution and its uncertainty 
(for the jump proposal).

16

MULTI-DIMENSIONAL INTERPOLATION USING A DELAUNAY 
MESH (PRELIMINARY)
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• A challenge of extracting the global 21-cm signal is the large foregrounds.

• However, unlike the foregrounds, the signal is spatially uniform, has well-characterized spectral features, 
and is unpolarized.

• We benefit from these differences using our novel approach for signal extraction and physical parameter 
constraints, using an SVD/MCMC pipeline.

• We obtain a highly significant improvement by using a pioneering experimental design of induced 
polarization and we can do the same with a time series drift scan. Note that these are not mutually 
exclusive.

• Our pipeline can be used for both lunar orbit and lunar surface low-frequency radio telescopes.

• We are also working on running our pipeline on current/ongoing ground based data from EDGES and 
CTP using our Pattern Recognition/Information Criteria/MCMC pipeline to measure the expected 
absorption features in the Global 21-cm spectrum.
June 6, 2018 AAS MiM | Denver
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