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HYDROGEN COSMOLOGY
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Upper panel: Evolution of a Universe’s slice from early (left) to
late times (right).

Lower panel: Standard models of the global 21-cm spectrum
relative to the CMB temperature; red models with metal-rich stars
(Pop 1), black curves assume that metal-free stars (Pop Ill) also
occur, but only in low-mass galaxies where atomic cooling is
inefficient. The dashed and solid curves differ in specific emission
and stellar properties (see Burns et al. 2017 for details).

The epochs B, C and D correspond to the ignition of the first stars, the
initial accretion of black holes, and the onset of reionization,
respectively.

Figure from adapted in turn from Pritchard & Loeb (2010) using newer
models from Mirocha et al. (2017).
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FOREGROUND TRAINING SET

DARE beam at 80 MHz

« Antenna temperature simulated convolving beam, B(v, 2), and
sky, Tgry (v, £2), through

J B, 2) Tgyy, (v, 2) d2
[B(v, ) dQ

Ty(v) =

|
5.94826e-06 0.663649
All-sky 408 MHz map from Haslam et al. (1982)

o« (CST code used to model beam

« Sky maps from Guzman et al. (2010) and Haslam et al. (1982)
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EXPERIMENTAL DESIGN: INCLUDING STOKES PARAMETERS
INTO THE LIKELIHOOD FUNCTION

Tauscher et al. (2018)

Beam-weighted foregrounds + Beam-weighted foreground training set for a single
10000\j ' rotation angle about one of the 4 antenna pointing
1000 T
o 100 ' directions (top).
= 10 |
< 1 :
_(1) . « The same training set with its mean subtracted
100 ! (middle).
o 500 | |
N _58 — : i « Thefirst 6 SVD basis functions obtained from the
-100 | i training set (bottom).
g | « The different rotation angles about each antenna
2 pointing direction are part of the same training set so
that SVD can pick up on angle-dependent structure

and imprint it onto the basis functions.
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EXPERIMENTAL DESIGN: INCLUDING DRIFT SCAN INTO THE
LIKELIHOOD FUNCTION

Preliminary (see also Tauscher’s poster) - Beam-weighted foreground training set for each LST
— Training set vs. data t)ir].
50001 « For a zenith pointing antenna from Earth, the drift
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Brightness temperature (K)

scan data from different times are part of the same
] training set so that SVD can pick up on LST-
dependent structure and imprint it onto the basis
. functions.
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GLOBAL 21-CM SIGNAL TRAINING SET

Tauscher et al. (2018 i : S A
L glopal sic  The signal training set used for our analysis was

0 ——— generated by running the ares code 7 x 105 times
_ within reasonable parameter bounds in order to fill
£ _100 the frequency band.
5
—200 « The top panel shows a thinned sample of that set
—— (black curves). The SVD modes are ordered from
1 most to least important.
SEZ 0 %%W « The modes are normalized so that they yield 1
= when divided by the noise level, squared, and
5 -1 summed over frequency, antenna pointing, and
rotation angles about the antenna pointing.
-2
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MODEL SELECTION:
OPTIMIZING THE NUMBER OF SIGNAL AND SYSTEMATIC MODES
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Grid of values of the Deviance Information Criterion
(DIC).

DIC — _2 1D ﬁHla,X + 2p

The colors indicate the difference between the DIC and
its minimal value, marked by the white square.

This same process can be done with any information
criteria (BIC, AlIC, BPIC, etc.).

Although only a 12 X 12 grid is shown here, all of the
information criteria were calculated over a 60 % 30 grid.
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MODEL SELECTION:
ANOTHER EXAMPLE USING BPIC

Systematic terms

BPIC
3.
4- it Grid of values of the Bayesian Predictive
51 10 Information Criterion (BPIC; Ando 2007).
6-
7 . BPIC = 67C~'6 + N, + 2 Tr(C"'AC~'D)
8-
9 A = GSG”, 6 = GE —y, and D = [diag(d)]
10

102

1 where y is the full data vector. See further
1 definitions in Tauscher et al (2018).
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 The colors indicate the difference between the
BPIC and its minimal value, marked by the white
square.

3 4 5 6 7 8 9 10 11
Signal terms
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MODEL SELECTION:
ANOTHER EXAMPLE USING BPIC

ystematic terms
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Signal Extraction optimization:

The black line for all panels is the input
21-cm signal.

The blue bands are the pipeline
reconstructions of the signal for a given
number of SVD signal and systematic
parameters/modes.
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MODEL SELECTION:
ANOTHER EXAMPLE USING BPIC
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Signal Extraction optimization:

The black line for all panels is the input
21-cm signal.

The blue bands are the pipeline
reconstructions of the signal for a given
number of SVD signal and systematic
parameters/modes.
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SIGNAL EXTRACTION WITH THE CODE PYLINEX

Tauscher et al. (2018)

_Insi_de training set

Qutsigie traininq set=

F_.__
g 0 —
é -50+1 ]
If -100+ !

N

~150-
=200 60 80 100 12040 60 80 100 12040 60 80 100 12040 60 80 100 120
v (MHz) v (MHz) v (MHz) v (MHz)
See the pylinex in this link: https://bitbucket.org/ktausch/pylinex
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Signal Estimates
from linear models
defined by SVD
eigenmodes. The
black curves show
the input signals,
the red curves the
signal estimates,
the dark/ red
bands the posterior
68/-"% confidence
intervals.

The input signals
for the 4 left plots
came from the ares
signal training set,
and the 4 on the
right from the tanh
model (see e.g.
Harker et al. 2016).
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https://bitbucket.org/ktausch/pylinex

SIGNAL EXTRACTION WITH THE CODE PYLINEX

Example of training set

Signal confidence interval with non-standard

2.0 00 0 cooling rates with ares
%] \/ allowing larger amplitudes
100- consistent with that of
~1001 - EDGES.
~2001 | ~ =200 Including both the dark
% ages and the cosmic
< ~300 = dawn troughs.
£ =300
5 400 0 For a given input signal
—400- (black curve), the
_500- dark/ red bands
correspond to the signal
c00. -500- estimate for DAPPER in
the range 15-26 MHz.
o 0 20 40 60 80 100 120 140 20 40 60 80 100 120

v (MHz) vV (MHz)

See the pylinex in this link: https://bitbucket.org/ktausch/pylinex
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SIGNAL BIAS STATISTIC
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Tauscher et al. (2018) Signal bias statistic, €

June 6, 2018

The signal bias statistic is a measure of the root mean square
error weighted bias of the signal fit:

T s
2 051.anC 0210
€2l-cm = N
14

Estimate of the Cumulative Distribution Function (CDF) of the
signal bias statistic from 5000 input simulated datasets.

A bias statistic of € roughly corresponds to a bias at the €0 level.
The solid black reference line is for the distribution which
associates 10 with 68% confidence and 2o with 95%.

To guide the eye, the dotted black line indicates the 95% level.
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NORMALIZED DEVIANCE

Tauscher et al. (2018)

* The deviance normalized by the degrees of freedom

257 — DIC (ares) —\- contains information about how well the training sets fit
--= DIC (tanh) the data:
— x?(dof)
20- . 6Tc—15
Ndof
15+
a * Histogram of the Probability Distribution Function (PDF)
- - for 5000 values of the normalized deviance from fits with

10- different input signals, beam-weighted foregrounds, and
noise when using the DIC to choose the best model.

5 ; * D should follow a distribution approximated by the
extremely thin black region, which is a combination of
- chisquare distributions associated with the range of
degrees of freedom chosen for the extractions.

O L T T T T T T L
0.92 094 096 0.98 1.00 1.02 1.04 1.06
Normalized deviance, D
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SVD/MCMC DATA ANALYSIS PIPELINE
(PRELIMINARY)

[ Simulation W
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parameter
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 After extracting the signal in frequency space in the first step of the pipeline we need to transform this result into a

constraint in physical parameter space.

Markov Chain Monte Carlo search to constrain the full probability distribution.

(Rapetti et al. 2018, in preparation)
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For this, we use a multi-dimensional interpolation using a Delaunay mesh for the change in parameter space and then a
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MULTI-DIMENSIONAL INTERPOLATION USING A DELAUNAY
MESH (PRELIMINARY))

75 — » We generalize linear interpolation to arbitrary
— Inpu ; . .
—— Step 1: Estimate input and output dimensions.

50+ Step 1: 1o interval
—— Step 2: Least square fit R ;

254 —— Step 3: MCMC starting point » We use this interpolation to perform a least

square fit (red line) using the training set.

» Importantly, note that having an starting point
(green line) within the estimated error (blue
band) provided by the first (very fast) step of
the pipeline is crucial for the convergence of
the MCMC in a vast parameter space where
we do not have otherwise any prior

1951 information on the solution and its uncertainty

40 50 60 70 80 90 100 110 120 :
b (MHz) (for the jump proposal).

—25+

6Tp (MK)

—-50-

—75+4

—100+

(Rapetti et al. 2018, in preparation)
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CONCLUSIONS NE

Network for Exploration
and Space Science

A challenge of extracting the global 21-cm signal is the large foregrounds.

However, unlike the foregrounds, the signal is spatially uniform, has well-characterized spectral features,
and is unpolarized.

We benefit from these differences using our novel approach for signal extraction and physical parameter
constraints, using an SVD/MCMC pipeline.

We obtain a highly significant improvement by using a pioneering experimental design of induced
polarization and we can do the same with a time series drift scan. Note that these are not mutually
exclusive.

Our pipeline can be used for both lunar orbit and lunar surface low-frequency radio telescopes.

We are also working on running our pipeline on current/ongoing ground based data from EDGES and
C TP using our Pattern Recognition/Information Criteria/MCMC pipeline to measure the expected
absorption features in the Global 21-cm spectrum.
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