The Magnetospheres and Space Weather Environments of Extrasolar Planets Optimized Strategies for Detecting Extrasolar Space Weather

Caltech

Gregg Hallinan E-mail: *gh@astro.caltech.edu*

Sunspot AR2673

SDO/AIA 131 2017-09-06 00:12:56 UT

Severe storm conditions met at: 07/2350 UTC

A fertility company that M defies the textbooks, a color

Multigenerational effects on development process a ser Microbial ecology and evolution 39.649 A 663

> \$10 6 NOVEMBER 2015

MAAAS

MAVEN at Mars Probing a dynamic upper atmosphere p. 643

Scien

- Flares higher X-ray and ultraviolet radiation flux –> photochemical reactions leading to significant atmospheric loss
- Coronal mass ejections (CMEs) higher stellar wind flux –>
 can erode atmosphere eg. ion pick-up of a CO²-rich atmosphere

Magnetic activity can redefine habitability!

Stars out to 8 pc

Small planets dominate planetary demographics and favor smaller stars (Howard et al. 2012) Rocky planets are particularly frequent around M dwarfs (Dressing & Charbonneau 2013, 2015) **The nearest habitable planet likely orbits an M dwarf at 2.6 +/- 0.4 pc**

Trappist-1 Anglada-Escudé et al 2016

Credit: NASA/JPL-Caltech

Proxima b

Gillon et al 2016

Hered F

Credit: ESO/M. Kornmesser

Credit: KISS/Caltech

Is magnetic activity important for defining habitability? Can we directly detect CMEs and planetary magnetic fields? Yes – with radio observations

Low Frequency Radio Emission

Type II radio emission associated with CMEs

Planetary auroral radio emission

Strategy 1: Targeted Searches

Ongoing Searches for Stellar CMEs

Time (min) Villadsen, GH et al. 2018

Stellar dynamic spectroscopy a mature field (Bastian & Bookbinder 1987, Osten & Bastian 2006)
Recent study – 21 bursts with ultra-wide bandwidth, no Type II bursts (Villadsen, GH et al. 2018)

- Need more sensitivity at lower frequencies!

Exoplanet Searches

New Kids on the Block

MWA: 80-300 MHz

HERA: 50-250 MHz

LOFAR: 10-240 MHz

LWA: 10-90 MHz

Brown Dwarf Radio and Optical Aurorae

Hallinan et al. 2015, *Nature*, 523, 568

- Mostly detected with the VLA at GHz frequencies \rightarrow kG magnetic fields - see recent reviews by Pineda, GH and Kao 2017; Williams 2017

Radio Emission from a Candidate Free Floating Planet – SIMP0136

Kao, GH et al. 2016, 2018

- Brightest T dwarf in the northern hemisphere (Artigau et al. 2006)
- Carina Near moving group association age of 200 Myr (Gagne et al. 2017)

- Long-term monitoring of nearest candidate habitable exoplanet hosts (e.g. Alpha Cen system)
- Can we detect solar-like CMEs on Alpha Cen AB and Proxima Centauri?
- Do M dwarfs produce radio bursts (and CMEs) as energetic as the Sun?
- Exoplanets detection via this method likely requires >10⁴ dipoles

Strategy 2: Multiplexed Searches

Space Weather Is highly Variable

Gallagher & D'Angelo 1981

Li, Zhang & Feng 2016

The OVRO-LWA: An Extrasolar Space Weather Telescope

Anderson, GH et al. 2017

-	رىنى ئۇلۇر: ئۇرىرىلىرى ئىرىتەسلىقارلىلىيىغىرات بىرىمىغۇر
-	UV Ceti: M5.5 + M6 (2.7 pc)
- P _e dites	and and a second s
-	Epsilon Eridani: K2 (3.2 pc)
- NANA	Ross 248: M3 (3.2 pc)
	ada ana ara ada aka ata ata aka hapi
-	GJ725: M3 + M3.5 (3.5 pc)
-	مىرىيە مەربىيە بىرىكى
-	61 Cygni: K5 + K7 (3.5 pc)

Monitors ~4,000 stellar/planetary systems out to 25pc

Anderson, GH et al. 2017

Multiplexed Searches from Space

Planetary radio emission subject to scaling laws for magnetic field strength and input solar wind power (e.g. see Farrell et al. 1999)

Adapted from Burkhart & Loeb 2017

Contextual Data in the Search for Biosignatures

Strategy 3: Triggered Searches for Biosignatures

Triggered Alerts from a Lunar Array

Simulated high-resolution spectrum of Proxima Cen b with 0.1 TW auroral emission at 5577 Å (Luger et al. 2017)

Summary

Understanding the impact of stellar activity and the presence of planetary magnetic fields is becoming increasingly important for defining planetary habitability

Low frequency radio observations are key

<u>The long-term future is from the lunar far-side</u>

Targeted searches are computationally low-cost but limited

Multiplexed searches require significant in-situ computational resources

Triggered searches for biosignatures present an exciting possibility